
    MicrosoftMicrosoft®  GW-BASIC GW-BASIC

User's GuideUser's Guide
This guide is designed to help you use the GW-BASIC Interpreter with
the MS-DOS (R) operating system. Section 1.5 lists resources that will
teach you how to program. 1987

User's ReferenceUser's Reference
This manual is an alphabetical reference to GW-BASIC instructions:
statements, functions, commands, and variables. 1987



GW-BASIC User's Guide                                                                                                                                         - 1 -

GW-BASIC User's Guide
Table of Contents
1 Welcome to GW-BASIC ......................................................4
1.1 System Requirements ...................................................4
1.2 Preliminaries .........................................................4
1.3 Notational Conventions ................................................4
1.4 Organization of This Manual ...........................................5
1.5 Bibliography ..........................................................6

2 Getting Started With GW-BASIC ............................................6
2.1 Loading GW-BASIC ......................................................6
2.2 Modes of Operation ....................................................7
2.2.1 Direct Mode........................................................7
2.2.2 Indirect Mode......................................................7

2.3 The GW-BASIC Command Line Format ......................................7
2.4 GW-BASIC Statements, Functions, Commands, and Variables ..............10
2.4.1 Keywords..........................................................10
2.4.2 Commands..........................................................11
2.4.3 Statements........................................................11
2.4.4 Functions.........................................................11
2.4.5 Variables.........................................................11

2.5 Line Format ..........................................................12
2.6 Returning to MS-DOS ..................................................13

3 Reviewing and Practicing GW-BASIC .......................................13
3.1 Example for the Direct Mode ..........................................13
3.2 Examples for the Indirect Mode .......................................14
3.3 Function Keys ........................................................16
3.4 Editing Lines ........................................................16
3.5 Saving Your Program File .............................................17

4 The GW-BASIC Screen Editor ..............................................18
4.1 Editing Lines in New Files ...........................................18
4.2 Editing Lines in Saved Files .........................................18
4.2.1 Editing the Information in a Program Line.........................18

4.3 Special Keys .........................................................19
4.4 Function Keys ........................................................21

5 Creating and Using Files ................................................22
5.1 Program File Commands ................................................22
5.2 Data Files ...........................................................23
5.2.1 Creating a Sequential File........................................23
5.2.2 Accessing a Sequential File.......................................25
5.2.3 Adding Data to a Sequential File..................................25

5.3 Random Access Files ..................................................26
5.3.1 Creating a Random Access File.....................................26
5.3.2 Accessing a Random Access File....................................28

6 Constants, Variables, Expressions and Operators .........................30
6.1 Constants ............................................................31
6.1.1 Single- and Double-Precision Form for Numeric Constants...........31

6.2 Variables ............................................................32
6.2.1 Variable Names and Declarations...................................32
6.2.2 Type Declaration Characters.......................................33
6.2.3 Array Variables...................................................33
6.2.4 Memory Space Requirements for Variable Storage....................34

6.3 Type Conversion ......................................................35
6.4 Expressions and Operators ............................................36



GW-BASIC User's Guide                                                                                                                                         - 2 -

6.4.1 Arithmetic Operators..............................................36
6.4.2 Relational Operators..............................................38
6.4.3 Logical Operators.................................................38
6.4.4 Functional Operators..............................................40
6.4.5 String Operators..................................................41

7 Appendix A - Error Codes and Messages ...................................42
8 Appendix B - Mathematical Functions .....................................48
9 Appendix C - ASCII Character Codes ......................................50
10 Appendix D -  Assembly Language (Machine Code) Subroutines.............51
10.1 10.1 Memory Allocation ...............................................52
10.2 CALL Statement .......................................................52
10.3 USR Function Calls ...................................................55
10.4 Programs That Call Assembly Language Programs ........................56

11 Appendix E - Converting BASIC Programs to GW-BASIC.....................58
11.1 String Dimensions ....................................................58
11.2 Multiple Assignments .................................................59
11.3 Multiple Statements ..................................................59
11.4 MAT Functions ........................................................60
11.5 FOR-NEXT Loops .......................................................60

12 Appendix F - Communications............................................60
12.1 Opening Communications Files .........................................60
12.2 Communications I/O ...................................................60
12.3 The COM I/O Functions ................................................60
12.4 Possible Errors: .....................................................61
12.5 The INPUT$ Function ..................................................61
12.6 The TTY Sample Program ...............................................63
12.7 Notes on the TTY Sample Program ......................................64

13 Hexadecimal Equivalents................................................66
14 Appendix H - Key Scan Codes............................................69
15 Appendix I - Characters Recognized by GW-BASIC.........................70
16 Glossary...............................................................72

Tables
Table 4.1  GW-BASIC Function Key Assignments................................21

Table 6.1  Relational Operators.............................................38

Table 6.2  Results Returned by Logical Operations...........................39

Table G.1  Decimal and Binary Equivalents to Hexadecimal Values.............66

Table G.2  Decimal Equivalents to Hexadecimal Values........................67



GW-BASIC User's Guide                                                                                                                                         - 3 -

Microsoft (R)
GW-BASIC Interpreter
User's Guide
Microsoft Corporation

Information in this document is subject to change without notice and does
not represent a commitment on the part of Microsoft Corporation.  The
software described in this document is furnished under a license agreement
or nondisclosure agreement.  It is against the law to copy this software
on magnetic tape, disk, or any other medium for any purpose other than the
purchaser's personal use.

(c) Copyright Microsoft Corporation, 1986, 1987. All rights reserved.

Portions copyright COMPAQ Computer Corporation, 1985

Simultaneously published in the United States and Canada.

Microsoft(R), MS-DOS(R), GW-BASIC(R) and the Microsoft logo are registered
trademarks of Microsoft Corporation.

Compaq(R) is a registered trademark of COMPAQ Computer Corporation.

DEC(R) is a registered trademark of Digital Equipment Corporation.

Document Number 410130001-330-R02-078Chapter 1



GW-BASIC User's Guide                                                                                                                                         - 4 -

1 Welcome to GW-BASIC

Microsoft (R)  GW-BASIC (R)  is a simple, easy-to-learn, easy-to-use computer
programming language with English-like statements and mathematical notations.
With GW-BASIC you will be able to write both simple and complex programs to
run on your computer. You will also be able to modify existing software that
is written in GW-BASIC.

This guide is designed to help you use the GW-BASIC Interpreter with the MS-
DOS (R) operating system. Section 1.5 lists resources that will teach you how
to program.

1.1 System Requirements
This version of GW-BASIC requires MS-DOS version 3.2 or later.

1.2 Preliminaries
Your GW-BASIC files will be on the MS-DOS diskette located at the back of the
MS-DOS User's Reference. Be sure to make a working copy of the diskette before
you proceed.

Note

 This manual is written for the user familiar with the MS-DOS operating sys-
 tem. For more information on MS-DOS, refer to the Microsoft MS-DOS 3.2
 User's Guide and User's Reference.

1.3 Notational Conventions
Throughout this manual, the following conventions are used to distinguish ele-
ments of text:

• bold Used for commands, options, switches, and literal portions of syntax
that must appear exactly as shown.

• italic Used for filenames, variables, and placeholders that represent the
type of text to be entered by the user.

• monospace Used for sample command lines, program code andexamples, and
sample sessions.

• SMALL CAPS Used for keys, key sequences, and acronyms.

• [Brackets] surround optional command-line elements.



GW-BASIC User's Guide                                                                                                                                         - 5 -

1.4 Organization of This Manual
The GW-BASIC User's Guide is divided into six chapters, nine appendixes, and
a glossary:

Chapter 1, "Welcome to GW-BASIC," describes this manual.

Chapter 2, "Getting Started With GW-BASIC," is an elementary guideline on how
to begin programming.

Chapter 3, "Reviewing and Practicing GW-BASIC," lets you use the principles of
GW-BASIC explained in Chapter 2.

Chapter 4, "The GW-BASIC Screen Editor," discusses editing commands that can
be used when inputting or modifying a GW-BASIC program. It also explains the
unique properties of the ten redefinable function keys and of other keys and
keystroke combinations.

Chapter 5, "Creating and Using Files," tells you how to create files and to
use the diskette input/output (I/O) procedures.

Chapter 6, "Constants, Variables, Expressions, and Operators," defines the
elements of GW-BASIC and describes how you will use them.

Appendix A, "Error Codes and Messages," is a summary of all the error codes
and error messages that you might encounter while using GW-BASIC.

Appendix B, "Mathematical Functions," describes how to calculate certain
mathematical functions not intrinsic to GW-BASIC.

Appendix C, "ASCII Character Codes," lists the ASCII character codes
recognized
by GW-BASIC.

Appendix D, "Assembly Language (Machine Code) Subroutines," shows how to
include assembly language subroutines with GW-BASIC.

Appendix E, "Converting BASIC Programs to GW-BASIC," provides pointers on
converting programs written in BASIC to GW-BASIC.

Appendix F, "Communications," describes the GW-BASIC statements required to
support RS-232 asynchronous communications with other computers and peri-
pheral devices.

Appendix G, "Hexadecimal Equivalents," lists decimal and binary equivalents to
hexadecimal values.

Appendix H, "Key Scan Codes," lists and illustrates the key scan code values
used in GW-BASIC.

Appendix I, "Characters Recognized by GW-BASIC," describes the GW-BASIC char-
acter set.

The Glossary defines words and phrases commonly used in GW-BASIC and data
processing.



GW-BASIC User's Guide                                                                                                                                         - 6 -

1.5 Bibliography
This manual is a guide to the use of the GW-BASIC Interpreter: it makes no
attempt to teach the BASIC programming language. The following texts may be
useful for those who wish to learn BASIC programming:

• Albrecht, Robert L., LeRoy Finkel, and Jerry Brown. BASIC. 2d ed. New
York:Wiley Interscience, 1978.

• Coan, James. Basic BASIC. Rochelle Park, N.J.: Hayden Book Company, 1978.

• Dwyer, Thomas A. and Margot Critchfield. BASIC and the Personal Computer.
Reading, Mass.: Addison-Wesley Publishing Co., 1978.

• Ettlin, Walter A. and Gregory Solberg. The MBASIC Handbook. Berkeley,
Calif.: Osborne/McGraw Hill, 1983.

• Knecht, Ken. Microsoft BASIC. Portland, Oreg.: Dilithium Press, 1982.

2 Getting Started With GW-BASIC
This chapter describes how to load GW-BASIC into your system. It also explains
the two different types of operation modes, line formats, and the various ele-
ments of GW-BASIC.

2.1 Loading GW-BASIC
To use the GW-BASIC language, you must load it into the memory of your com-
puter from your working copy of the MS-DOS diskette. Use the following pro-
cedure:

 1. Turn on your computer.

 2. Insert your working copy of the MS-DOS diskette into Drive A of your
    computer, and press RETURN.

 3. Type the following command after the A> prompt, and press RETURN:

 gwbasic

Once you enter GW-BASIC, the GW-BASIC prompt, Ok, will replace the MS-DOS
prompt, A>.

On the screen, the line XXXXX Bytes Free indicates how many bytes are avail-
able for use in memory while using GW-BASIC.

The function key (F1 - F10) assignments appear on the bottom line of the
screen. These function keys can be used to eliminate key strokes and save you
time. Chapter 4, "The GW-BASIC Screen Editor," contains detailed information
on function keys.



GW-BASIC User's Guide                                                                                                                                         - 7 -

2.2 Modes of Operation
Once GW-BASIC is initialized (loaded), it displays the Ok prompt. Ok means
GW-BASIC is at command level; that is, it is ready to accept commands. At this
point, GW-BASIC may be used in either of two modes: direct mode or indirect
mode.

2.2.1 Direct Mode

In the direct mode, GW-BASIC statements and commands are executed as they
are entered. Results of arithmetic and logical operations can be displayed
immediately and/or stored for later use, but the instructions themselves are
lost after execution. This mode is useful for debugging and for using GW-BASIC
as a calculator for quick computations that do not require a complete program.

2.2.2 Indirect Mode

The indirect mode is used to enter programs. Program lines are always preceded
by line numbers, and are stored in memory. The program stored in memory is
executed by entering the RUN command.

2.3 The GW-BASIC Command Line Format
The GW-BASIC command line lets you change the environment or the conditions
that apply while using GW-BASIC.

Note

 When you specify modifications to the operating environment of GW-BASIC,
 be sure to maintain the parameter sequence shown in the syntax statement.
 To skip a parameter, insert a comma. This will let the computer know that
 you have no changes to that particular parameter.

GW-BASIC uses a command line of the following form:

gwbasic[filename][<stdin][[>]>stdout][/f:n][/i][/s:n][/c:n][/m:[n][,n]][/d]

filename is the name of a GW-BASIC program file. If this parameter is present,
GW-BASIC proceeds as if a RUN command had been given. If no extension is pro-
vided for the filename, a default file extension of .BAS is assumed. The .BAS
extension indicates that the file is a GW-BASIC file. The maximum number of
characters a filename may contain is eight with a decimal and three extension
characters.

<stdin redirects GW-BASIC's standard input to be read from the specified file.
When used, it must appear before any switches.

This might be used when you have multiple files that might be used by your
program and you wish to specify a particular input file.

>stdout redirects GW-BASIC's standard output to the specified file or device.
When used, it must appear before any switches. Using >> before stdout causes



GW-BASIC User's Guide                                                                                                                                         - 8 -

output to be appended.

GW-BASIC can be redirected to read from standard input (keyboard) and write
to standard output (screen) by providing the input and output filenames on the
command line as follows:

gwbasic program name <input file[>]>output file

An explanation of file redirection follows this discussion of the GW-BASIC
command line.

Switches appear frequently in command lines; they designate a specified course
of action for the command, as opposed to using the default for that setting. A
switch parameter is preceded by a slash (/).

/f:n sets the maximum number of files that may be opened simultaneously dur-
ing the execution of a GW-BASIC program. Each file requires 194 bytes for the
File Control Block (FCB) plus 128 bytes for the data buffer. The data buffer
size may be altered with the /s: switch. If the /f: switch is omitted, the
maximum number of open files defaults to 3. This switch is ignored unless the
/i switch is also specified on the command line.

/i makes GW-BASIC statically allocate space required for file operations,
based on the /s and /f switches.

/s:n sets the maximum record length allowed for use with files. The record
length option in the OPEN statement cannot exceed this value. If the /s:
switch is omitted, the record length defaults to 128 bytes. The maximum record
size is 32767.

/c:n controls RS-232 communications. If RS-232 cards are present, /c:0
disables RS-232 support, and any subsequent I/O attempts for each RS-232 card
present. If the /c: switch is omitted, 256 bytes are allocated for the receive
buffer and 128 bytes for the transmit buffer for each card present.

The /c: switch has no affect when RS-232 cards are not present. The /c:n
switch allocates n bytes for the receive buffer and 128 bytes for the transmit
buffer for each RS-232 card present.

/m:n[,n] sets the highest memory location (first n) and maximum block size
(second n) used by GW-BASIC. GW-BASIC attempts to allocate 64K bytes of
memory for the data and stack segments. If machine language subroutines are
to be used with GW-BASIC programs, use the /m: switch to set the highest loca-
tion that GW-BASIC can use. The maximum block size is in multiples of 16. It
is used to reserve space for user programs (assembly language subroutines)
beyond GW-BASIC's workspace.

The default for maximum block size is the highest memory location. The default
for the highest memory location is 64K bytes unless maximum block size is
specified, in which case the default is the maximum block size (in multiples
of 16).

/d allows certain functions to return double-precision results. When the /d
switch is specified, approximately 3000 bytes of additional code space are
used. The functions affected are ATN, COS, EXP, LOG, SIN, SQR, and TAN.



GW-BASIC User's Guide                                                                                                                                         - 9 -

Note

 All switch numbers may be specified as decimal, octal (preceded by &O), or
 hexadecimal (preceded by &H).

Sample GW-BASIC command lines are as follows:

The following uses 64K bytes of memory and three files; loads and executes the
program file payroll.bas:

A>gwbasic PAYROLL

The following uses 64K bytes of memory and six files; loads and executes the
program file invent.bas:

A>gwbasic INVENT /F:6

The following disables RS-232 support and uses only the first 32K bytes of
memory. 32K bytes above that are reserved for user programs:

A>gwbasic /C:0 /M:32768,4096

The following uses four files and allows a maximum record length of 512 bytes:

A>gwbasic /F:4 /S:512

The following uses 64K bytes of memory and three files. Allocates 512 bytes to
RS-232 receive buffers and 128 bytes to transmit buffers, and loads and
Executes the program file tty.bas:

A>gwbasic TTY /C:512

For more information about RS-232 Communications, see Appendix F.

Redirection of Standard Input and Output

When redirected, all INPUT, LINE INPUT, INPUT$, and INKEY$ statements
are read from the specified input file instead of the keyboard.

All PRINT statements write to the specified output file instead of the screen.

Error messages go to standard output and to the screen.

File input from KYBD: is still read from the keyboard.

File output to SCRN: still outputs to the screen.

GW-BASIC continues to trap keys when the ON KEY n statement is used.

Typing CTRL-BREAK when output is redirected causes GW-BASIC to close any open
files, issue the message "Break in line nnnn" to standard output, exit
GW-BASIC, and return to MS-DOS.

When input is redirected, GW-BASIC continues to read from this source until a
CTRL-Z is detected. This condition can be tested with the end-of-file (EOF)



GW-BASIC User's Guide                                                                                                                                         - 10 -

function. If the file is not terminated by a CTRL-Z, or if a GW-BASIC file
input statement tries to read past the end of file, then any open files are
closed, and GW-BASIC returns to MS-DOS.

For further information about these statements and other statements,
functions, commands, and variables mentioned in this text, refer to the GW-
BASIC User's Reference.

Some examples of redirection follow.

GWBASIC MYPROG >DATA.OUT

Data read by the INPUT and LINE INPUT statements continues to come from
the keyboard. Data output by the PRINT statement goes into the data.out file.

gwbasic MYPROG <DATA.IN

Data read by the INPUT and LINE INPUT statements comes from data.in.
Data output by PRINT continues to go to the screen.

gwbasic MYPROG <MYINPUT.DAT >MYOUTPUT.DAT

Data read by the INPUT and LINE INPUT statements now come from the file
myinput.dat, and data output by the PRINT statements goes into myoutput.dat.

gwbasic MYPROG <\SALES\JOHN\TRANS.DAT >>\SALES\SALES.DAT

Data read by the INPUT and LINE INPUT statements now comes from the file
\sales\john\trans.dat. Data output by the PRINT statement is appended to the
file \sales\sales.dat.

2.4 GW-BASIC Statements, Functions, Commands, and
Variables

A GW-BASIC program is made up of several elements: keywords, commands,
statements, functions, and variables.

2.4.1 Keywords

GW-BASIC keywords, such as print, goto, and return have special significance
for the GW-BASIC Interpreter. GW-BASIC interprets keywords as part of state-
ments or commands.

Statements, Functions, Commands, and Variables

Keywords are also called reserved words. They cannot be used as variable
names, or the system will interpret them as commands. However, keywords may
be embedded within variable names.

Keywords are stored in the system as tokens (1- or 2-byte characters) for the
most efficient use of memory space.



GW-BASIC User's Guide                                                                                                                                         - 11 -

2.4.2 Commands

Commands and statements are both executable instructions. The difference
between commands and statements is that commands are generally executed in
the direct mode, or command level of the interpreter. They usually perform
some type of program maintenance such as editing, loading, or saving programs.
When GW-BASIC is invoked and the GW-BASIC prompt, Ok, appears, the system
assumes command level.

2.4.3 Statements

A statement, such as ON ERROR...GOTO, is a group of GW-BASIC keywords
generally used in GW-BASIC program lines as part of a program. When the pro-
gram is run, statements are executed when, and as, they appear.

2.4.4 Functions

The GW-BASIC Interpreter performs both numeric and string functions.

2.4.4.1 Numeric Functions

The GW-BASIC Interpreter can perform certain mathematical (arithmetical or
algebraic) calculations. For example, it calculates the sine (sin), cosine
(cos), or tangent (tan) of angle x.

Unless otherwise indicated, only integer and single-precision results are
returned by numeric functions.

2.4.4.2  String Functions

String functions operate on strings. For example, TIME$ and DATE$ return the
time and date known by the system. If the current time and date are entered
during system start up, the correct time and date are given (the internal
clock in the computer keeps track).

2.4.4.3  User-Defined Functions

Functions can be user-defined by means of the DEF FN statement. These func-
tions can be either string or numeric.

2.4.5 Variables

Certain groups of alphanumeric characters are assigned values and are called
variables. When variables are built into the GW-BASIC program they provide
information as they are executed.

For example, ERR defines the latest error which occurred in the program; ERL
gives the location of that error. Variables can also be defined and/or



GW-BASIC User's Guide                                                                                                                                         - 12 -

redefined by the user or by program content.

All GW-BASIC commands, statements, functions, and variables are individually
described in the GW-BASIC User's Reference.

2.5 Line Format
Each of the elements of GW-BASIC can make up sections of a program that are
called statements. These statements are very similar to sentences in English.
Statements are then put together in a logical manner to create programs. The
GW-BASIC User's Reference describes all of the statements available for use in
GW-BASIC.

In a GW-BASIC program, lines have the following format:

nnnnn statement[statements]

nnnnn is a line number

statement is a GW-BASIC statement.

Statements, Functions, Commands, and Variables

A GW-BASIC program line always begins with a line number and must contain at
least one character, but no more than 255 characters. Line numbers indicate
the order in which the program lines are stored in memory, and are also used
as references when branching and editing. The program line ends when you press
the RETURN key.

Depending on the logic of your program, there may be more than one statement
on a line. If so, each must be separated by a colon (:). Each of the lines in
a program should be preceded by a line number. This number may be any whole
integer from 0 to 65529. It is customary to use line numbers such as 10, 20,
30, and 40, in order to leave room for any additional lines that you may wish
to include later. Since the computer will run the statements in numerical
order, additional lines needn't appear in consecutive order on the screen: for
example, if you entered line 35 after line 60, the computer would still run
line 35 after line 30 and before line 40. This technique may save your
reentering an entire program in order to include one line that you have
forgotten.

The width of your screen is 80 characters. If your statement exceeds this
width, the cursor will wrap to the next screen line automatically. Only when
you press the RETURN key will the computer acknowledge the end of the line.
Resist the temptation to press RETURN as you approach the edge of the screen
(or beyond). The computer will automatically wrap the line for you. You can
also press CTRL-RETURN, which causes the cursor to move to the beginning of
the next screen line without actually entering the line. When you press
RETURN, the entire logical line is passed to GW-BASIC for storage in the
program.



GW-BASIC User's Guide                                                                                                                                         - 13 -

In GW-BASIC, any line of text that begins with a numeric character is
Considered a program line and is processed in one of three ways after the
RETURN key is pressed:

 o A new line is added to the program. This occurs if the line number is
   legal (within the range of 0 through 65529), and if at least one alpha or
   special character follows the line number in the line.

 o An existing line is modified. This occurs if the line number matches the
   line number of an existing line in the program. The existing line is
   replaced with the text of the newly-entered line. This process is called
   editing.

Note

 Reuse of an existing line number causes all of the information con-
 tained in the original line to be lost. Be careful when entering
 numbers in the indirect mode. You may erase some program lines by
 accident.

 o An existing line is deleted. This occurs if the line number matches the
   line number of an existing line, and the entered line contains only a line
   number. If an attempt is made to delete a nonexistent line, an
   "Undefined line number" error message is displayed.

2.6 Returning to MS-DOS
Before you return to MS-DOS, you must save the work you have entered under
GW-BASIC, or the work will be lost.

To return to MS-DOS, type the following after the Ok prompt, and press RETURN:

system

The system returns to MS-DOS, and the A> prompt appears on your screen.

3 Reviewing and Practicing GW-BASIC
Example for the Direct Mode

The practice sessions in this chapter will help you review what you have
learned. If you have not done so, this is a good time to turn on your computer
and load the GW-BASIC Interpreter.

3.1 Example for the Direct Mode
You can use your computer in the direct mode to perform fundamental arith-
metic operations. GW-BASIC recognizes the following symbols as arithmetic
operators:



GW-BASIC User's Guide                                                                                                                                         - 14 -

 Operation        GW-BASIC Operator

 Addition         +

 Subtraction      -

 Multiplication   *

 Division         /

To enter a problem, respond to the Ok prompt with a question mark (?), fol-
lowed by the statement of the problem you want to solve, and press the RETURN
key. In GW-BASIC, the question mark can be used interchangeably with the key-
word PRINT. The answer is then displayed.

Type the following and press the RETURN key:

?2+2

GW-BASIC will display the answer on your screen:

?2+2
4
Ok

To practice other arithmetic operations, replace the + sign with the desired
operator.

The GW-BASIC language is not restricted to arithmetic functions. You can also
enter complex algebraic and trigonometric functions. The formats for these
functions are provided in Chapter 6, "Constants, Variables, Expressions and
Operators."

3.2 Examples for the Indirect Mode
The GW-BASIC language can be used for functions other than simple algebraic
calculations. You can create a program that performs a series of operations
and then displays the answer. To begin programming, you create lines of
instructions called statements. Remember that there can be more than one
statement on a line, and that each line is preceded by a number.

For example, to create the command PRINT 2+3 as a statement, type the fol-
lowing:

10 print 2+3

When you press the RETURN key, the cursor shifts to the next line, but nothing
else happens. To make the computer perform the calculation, type the following
and press the RETURN key:

run

Your screen should look like this:

Ok



GW-BASIC User's Guide                                                                                                                                         - 15 -

10 print 2+3
run
 5
Ok

You have just written a program in GW-BASIC.

The computer reserves its calculation until specifically commanded to continue
(with the RUN command). This allows you to enter more lines of instruction.
When you type the RUN command, the computer does the addition and displays the
answer.

The following program has two lines of instructions. Type it in:

10 x=3
20 print 2+x

Now use the RUN command to have the computer calculate the answer.

Examples for the Indirect Mode

Your screen should look like this:

Ok
10 x=3
20 print 2+x
run
 5
Ok

The two features that distinguish a program from a calculation are

 1. the numbered lines

 2. the use of the RUN command

These features let the computer know that all the statements have been typed
and the computation can be carried out from beginning to end. It is the
numbering of the lines that first signals the computer that this is a program,
not a calculation, and that it must not do the actual computation until the
RUN command is entered.

In other words, calculations are done under the direct mode. Programs are
written under the indirect mode.

To display the entire program again, type the LIST command and press the
RETURN key:

list

Your screen should look like this:

Ok
10 x=3
20 print 2+x
run
Ok



GW-BASIC User's Guide                                                                                                                                         - 16 -

 5
Ok
list
10 X=3
20 PRINT 2+X
Ok

You'll notice a slight change in the program. The lowercase letters you
entered have been converted into uppercase letters. The LIST command makes
this change automatically.

3.3 Function Keys
Function keys are keys that have been assigned to frequently-used commands.
The ten function keys are located on the left side of your keyboard. A guide
to these keys and their assigned commands appears on the bottom of the GW-
BASIC screen. To save time and keystrokes, you can press a function key
instead of typing a command name.

For example, to list your program again, you needn't type the LIST command;
you can use the function key assign to it, instead:

 o Press the F1 key.

 o Press RETURN.

Your program should appear on the screen.

To run the program, simply press the F2 key, which is assigned to the RUN com-
mand.

As you learn more commands, you'll learn how to use keys F3 through F10.
Chapter 4, "The GW-BASIC Screen Editor," contains more information about
keys used in GW-BASIC.

3.4 Editing Lines
There are two basic ways to change lines. You can

 o Delete and replace them

 o Alter them with the EDIT command

To delete a line, simply type the line number and press the RETURN key. For
example, if you type 12 and press the RETURN key, line number 12 is deleted
from your program.

To use the EDIT command, type the command EDIT, followed by the number of
the line you want to change. For example, type the following, and press the
RETURN key:

edit 10

Saving your Program File



GW-BASIC User's Guide                                                                                                                                         - 17 -

You can then use the following keys to perform editing:

 Key Function

 CURSOR UP Moves the cursor within the statement
 CURSOR DOWN
 CURSOR LEFT
 CURSOR RIGHT

 BACKSPACE  Deletes the character to the left of the cursor

 DELETE (DEL)  Deletes the current character

 INSERT (INS)  Lets you insert characters to the left of the cursor.

For example, to modify statement (line) 10 to read x=4, use the cursor-right
control key to move the cursor under the 3, and then type a 4. The number 4
replaces the number 3 in the statement.

Now press the RETURN key, and then the F2 key.

Your screen displays the following:

Ok
10 X=4
RUN
 6
Ok

3.5 Saving Your Program File
Creating a program is like creating a data file. The program is a file that
contains specific instructions, or statements, for the computer. In order to
use the program again, you must save it, just as you would a data file.

To save a file in GW-BASIC, use the following procedure:

1. Press the F4 key.

   The command word SAVE" appears on your screen.

2. Type a name for the program, and press the RETURN key. The file is
   saved under the name you specified.

To recall a saved file, use the following procedure:

1. Press the F3 key.

   The command load LOAD" appears on your screen.

2. Type the name of the file.

3. Press RETURN.

The file is loaded into memory, and ready for you to list, edit, or run.



GW-BASIC User's Guide                                                                                                                                         - 18 -

4 The GW-BASIC Screen Editor
Editing Lines in Saved Files

You can edit GW-BASIC program lines as you enter them, or after they have been
saved in a program file.

4.1 Editing Lines in New Files
If an incorrect character is entered as a line is being typed, it can be
Deleted with the BACKSPACE or DEL keys, or with CTRL-H. After the character is
deleted, you can continue to type on the line.

The ESC key lets you delete a line from the screen that is in the process of
being typed. In other words, if you have not pressed the RETURN key, and you
wish to delete the current line of entry, press the ESC key.

To delete the entire program currently residing in memory, enter the NEW com-
mand. NEW is usually used to clear memory prior to entering a new program.

4.2 Editing Lines in Saved Files
After you have entered your GW-BASIC program and saved it, you may discover
that you need to make some changes. To make these modifications, use the
LIST statement to display the program lines that are affected:

 1. Reload the program.

 2. Type the LIST command, or press the F1 key.

 3. Type the line number, or range of numbers, to be edited.

    The lines will appear on your screen.

4.2.1 Editing the Information in a Program Line

You can make changes to the information in a line by positioning the cursor
where the change is to be made, and by doing one of the following:

 o Typing over the characters that are already there.

 o Deleting characters to the left of the cursor, using the BACKSPACE key.

 o Deleting characters at the cursor position using the DEL key on the
   number pad.

 o Inserting characters at the cursor position by pressing the INS key on
   the number pad. This moves the characters following the cursor to the
   right making room for the new information.



GW-BASIC User's Guide                                                                                                                                         - 19 -

 o Adding to or truncating characters at the end of the program line.

If you have changed more than one line, be sure to press RETURN on each
modified line. The modified lines will be stored in the proper numerical
sequence, even if the lines are not updated in numerical order.

Note

 A program line will not actually have changes recorded within the GW-BASIC
 program until the RETURN key is pressed with the cursor positioned some-
 where on the edited line.

You do not have to move the cursor to the end of the line before pressing the
RETURN key. The GW-BASIC Interpreter remembers where each line ends, and
transfers the whole line, even if RETURN is pressed while the cursor is
located in the middle or at the beginning of the line.

To truncate, or cut off, a line at the current cursor position, type CTRL-END
or CTRL-E, followed by pressing the RETURN key.

If you have originally saved your program to a program file, make sure that
you save the edited version of your program. If you do not do this, your
modifications will not be recorded.

4.3 Special Keys
The GW-BASIC Interpreter recognizes nine of the numeric keys on the right side
of your keyboard. It also recognizes the BACKSPACE key, ESC key, and the CTRL
key. The following keys and key sequences have special functions in GW-BASIC:

BACKSPACE or CTRL-H Deletes the last character typed, or deletes the character
to the left of the cursor. All characters to the right of the cursor are moved
left one position. Subsequent characters and lines within the current logical
line are moved up as with the DEL key.

CTRL-BREAK or CTRL-C Returns to the direct mode, without saving
changes made to the current line. It will also exit auto line-numbering mode.

CTRL-CURSOR-LEFT or CTRL-B Moves the cursor to the beginning of the previous
word. The previous word is defined as the next character to the left of the
cursor in the set A to Z or in the set 0 to 9.

CTRL-CURSOR-RIGHT or CTRL-F Moves the cursor to the beginning of the next
word. The next word is defined as the next character to the right of the
cursor in the set A to Z or in the set 0 to 9. In other words, the cursor
moves to the next number or letter after a blank or other special character.

CURSOR-DOWN or CTRL Moves the cursor down one line on the screen.

CURSOR-LEFT or CTRL-]  Moves the cursor one position left. When the cursor is
advanced beyond the left edge of the screen, it will wrap to the right side of
the screen on the preceding line.

CURSOR-RIGHT or CTRL-\ Moves the cursor one position right. When the cursor is
advanced beyond the right edge of the screen, it will wrap to the
left side of the screen on the following line.



GW-BASIC User's Guide                                                                                                                                         - 20 -

CURSOR-UP or CTRL-6 Moves the cursor up one line on the screen.

CTRL-BACKSPACE or DEL Deletes the character positioned over the cursor. All
characters to the right of the one deleted are then moved one position left to
fill in where the deletion was made.

If a logical line extends beyond one physical line, characters on subsequent
lines are moved left one position to fill in the previous space, and the
character in the first column of each subsequent line is moved up to the end
of the preceding line.

DEL (delete) is the opposite of INS (insert). Deleting text reduces logical
line length.

CTRL-END or CTRL-E Erases from the cursor position to the end of the logical
line. All physical screen lines are erased until the terminating RETURN is
found.

CTRL-N or END Moves the cursor to the end of the logical line. Characters
typed from this position are added to the line.

CTRL-RETURN or CTRL-J Moves the cursor to the beginning of the next screen
line. This lets you create logical program lines which are longer than the
physical screen width. Logical lines may be up to 255 characters long. This
function may also be used as a line feed.

CTRL-M or RETURN  Enters a line into the GW-BASIC program. It also moves the
cursor to the next logical line.

CTRL-[ or ESC Erases the entire logical line on which the cursor is located.

CTRL-G Causes a beep to emit from your computer's speaker.

CTRL-K or HOME  Moves the cursor to the upper left corner of the screen. The
screen contents are unchanged.

CTRL-HOME or CTRL-L Clears the screen and positions the cursor in the upper
left corner of the screen.

CTRL-R or INS Turns the Insert Mode on and off. Insert Mode is indicated by
the cursor blotting the lower half of the character position. In Graphics
Mode, the normal cursor covers the whole character position. When Insert Mode
is active, only the lower half of the character position is blanked by the
cursor.

When Insert Mode is off, characters typed replace existing characters on the
line. The SPACEBAR erases the character at the current cursor position and
moves the cursor one character to the right. The CURSOR-RIGHT key moves the
cursor one character to the right, but does not delete the character.

When Insert Mode is off, pressing the TAB key moves the cursor over characters
until the next tab stop is reached. Tab stops occur every eight character
positions.

When Insert Mode is on, characters following the cursor are moved to the right
as typed characters are inserted before them at the current cursor position.



GW-BASIC User's Guide                                                                                                                                         - 21 -

After each keystroke, the cursor moves one position to the right. Line
wrapping is observed. That is, as characters move off the right side of the
screen, they are inserted from the left on subsequent lines. Insertions
increase logical line length.

When Insert Mode is on, pressing the TAB key causes blanks to be inserted from
current cursor position to the next tab stop. Line wrapping is observed as
above.

CTRL-NUM LOCK or CTRL-S Places the computer in a pause state. To resume
operation, press any other key.

CTRL-PRTSC Causes characters printed on the screen to echo to the lineprinter
(lpt1:). In other words, you will be printing what you type on the screen.
Pressing CTRL-PRTSC a second time turns off the echoing of characters to
lpt1:.

SHIFT + PRTSC Sends the current screen contents to the printer, effectively
creating a snapshot of the screen.

CTRL-I or TAB Moves the cursor to the next tab stop. Tab stops occur every
eight columns.

4.4 Function Keys
Certain keys or combinations of keys let you perform frequently-used commands
or functions with a minimum number of keystrokes. These keys are called
function keys.

The special function keys that appear on the left side of your keyboard can be
temporarily redefined to meet the programming requirements and specific func-
tions that your program may require.

Function keys allow rapid entry of as many as 15 characters into a program
with one keystroke. These keys are located on the left side of your keyboard
and are labelled F1 through F10. GW-BASIC has already assigned special
functions to each of these keys. You will notice that after you load GW-BASIC,
these special key functions appear on the bottom line of your screen. These
key assignments have been selected for you as some of the most frequently used
commands.

Initially, the function keys are assigned the following special functions:



GW-BASIC User's Guide                                                                                                                                         - 22 -

Table 4.1: GW-BASIC Function Key Assignments

Key  Function     Key  Function
F1   LIST         F6   ,"LPT1:"<-
F2   RUN<-        F7   TRON<-
F3   LOAD"        F8   TROFF<-
F4   SAVE"        F9   KEY
F5   CONT<-       F10  SCREEN 0,0,0<-

Note

 The <- following a function indicates that you needn't press the RETURN
 key after the function key. The selected command will be immediately exe-
 cuted.

If you choose, you may change the assignments of these keys. Any one or all of
the 10 function keys may be redefined. For more information, see the KEY and
ON KEY statements in the GW-BASIC User's Reference.

5 Creating and Using Files
There are two types of files in MS-DOS systems:

 o Program files, which contain the program or instructions for the computer

 o Data files, which contain information used or created by program files

5.1 Program File Commands
The following are the commands and statements most frequently used with pro-
gram files. The GW-BASIC User's Reference contains more information on each
of them.

SAVE filename[,a][,p]

Writes to diskette the program currently residing in memory.

LOAD filename[,r]

Loads the program from a diskette into memory. LOAD deletes the current con-
tents of memory and closes all files before loading the program.

RUN filename[,r]

Loads the program from a diskette into memory and runs it immediately. RUN
deletes the current contents of memory and closes all files before loading the
program.

MERGE filename

Loads the program from a diskette into memory, but does not delete the current
program already in memory.



GW-BASIC User's Guide                                                                                                                                         - 23 -

KILL filename

Deletes the file from a diskette. This command can also be used with data
files.

NAME old filename AS new filename

Changes the name of a diskette file. Only the name of the file is changed. The
file is not modified, and it remains in the same space and position on the
disk. This command can also be used with data files.

5.2 Data Files
GW-BASIC programs can work with two types of data files:

 o Sequential files

 o Random access files

Sequential files are easier to create than random access files, but are
limited in flexibility and speed when accessing data. Data written to a
sequential file is a series of ASCII characters. Data is stored, one item
after another (sequentially), in the order sent. Data is read back in the same
way.

Creating and accessing random access files requires more program steps than
sequential files, but random files require less room on the disk, because
GW-BASIC stores them in a compressed format in the form of a string.

The following sections discuss how to create and use these two types of data
files.

5.2.1 Creating a Sequential File

The following statements and functions are used with sequential files:

CLOSE LOF
EOF OPEN
INPUT# PRINT#
LINE INPUT#  PRINT# USING
LOC UNLOCK
LOCK WRITE#

The following program steps are required to create a sequential file and
access the data in the file:

 1. Open the file in output (O) mode. The current program will use this file
    first for output:

    OPEN "O",#1,"filename"

 2. Write data to the file using the PRINT# or WRITE# statement:

    PRINT#1,A$



GW-BASIC User's Guide                                                                                                                                         - 24 -

    PRINT#1,B$
    PRINT#1,C$

 3. To access the data in the file, you must close the file and reopen it in
    input (I) mode:

    CLOSE #1
    OPEN "I",#1,"filename"

 4. Use the INPUT# or LINE INPUT# statement to read data from the
    sequential file into the program:

    INPUT#1,X$,Y$,Z$

Example 1 is a short program that creates a sequential file, data, from
information input at the terminal.

Example 1

10 OPEN "O",#1,"DATA"
20 INPUT "NAME";N$
30 IF N$="DONE" THEN END
40 INPUT "DEPARTMENT";D$
50 INPUT "DATE HIRED";H$
60 PRINT#1,N$;","D$",";H$
70 PRINT:GOTO 20
RUN
NAME? MICKEY MOUSE
DEPARTMENT? AUDIO/VISUAL AIDS
DATE HIRED? 01/12/72

NAME? SHERLOCK HOLMES
DEPARTMENT? RESEARCH
DATE HIRED? 12/03/65

NAME? EBENEEZER SCROOGE
DEPARTMENT? ACCOUNTING
DATE HIRED? 04/27/78

NAME? SUPER MANN
DEPARTMENT? MAINTENANCE
DATE HIRED? 08/16/78

NAME? DONE
OK



GW-BASIC User's Guide                                                                                                                                         - 25 -

5.2.2 Accessing a Sequential File

The program in Example 2 accesses the file data, created in the program in
Example 1, and displays the name of everyone hired in 1978.

Example 2

10 OPEN "I",#1,"DATA"
20 INPUT#1,N$,D$,H$
30 IF RIGHT$(H$,2)="78" THEN PRINT N$
40 GOTO 20
50 CLOSE #1
RUN
EBENEEZER SCROOGE
SUPER MANN
Input past end in 20
Ok

The program in Example 2 reads, sequentially, every item in the file. When all
the data has been read, line 20 causes an "Input past end" error. To avoid
this error, insert line 15, which uses the EOF function to test for end of
file:

15 IF EOF(1) THEN END

and change line 40 to GOTO 15.

A program that creates a sequential file can also write formatted data to the
diskette with the PRINT# USING statement. For example, the following state-
ment could be used to write numeric data to diskette without explicit delim-
iters:

PRINT#1,USING"####.##,";A,B,C,D

The comma at the end of the format string serves to separate the items in the
disk file.

The LOC function, when used with a sequential file, returns the number of 128-
byte records that have been written to or read from the file since it was
opened.

5.2.3 Adding Data to a Sequential File

When a sequential file is opened in O mode, the current contents are
destroyed. To add data to an existing file without destroying its contents,
open the file in append (A) mode.

The program in Example 3 can be used to create, or to add onto a file called
names. This program illustrates the use of LINE INPUT. LINE INPUT will read
in characters until it sees a carriage return indicator, or until it has read
255 characters. It does not stop at quotation marks or commas.



GW-BASIC User's Guide                                                                                                                                         - 26 -

Example 3

10 ON ERROR GOTO 2000
20 OPEN "A",#1,"NAMES"
110 REM ADD NEW ENTRIES TO FILE
120 INPUT "NAME";N$
130 IF N$="" THEN 200 `CARRIAGE RETURN EXITS INPUT LOOP
140 LINE INPUT "ADDRESS? ";A$
150 LINE INPUT "BIRTHDAY? ";B$
160 PRINT#1,N$
170 PRINT#1,A$
180 PRINT#1,B$
190 PRINT:GOTO 120
200 CLOSE #1
2000 ON ERROR GOTO 0

In lines 10 and 2000 the ON ERROR GOTO statement is being used. This
statement enables error trapping and specifies the first line (2000) of the
error handling subroutine. Line 10 enables the error handling routine. Line
2000 disables the error handling routine and is the point where GW-BASIC
branches to print the error messages.

5.3 Random Access Files
Information in random access files is stored and accessed in distinct,
numbered units called records. Since the information is called by number, the
data can be called from any disk location; the program needn't read the entire
disk, as when seeking sequential files, to locate data. GW-BASIC supports
large random files. The maximum logical record number is 2 32  -1.

The following statements and functions are used with random files:

CLOSE FIELD  MKI$
CVD LOC MKS$
CVI LOCK OPEN
CVS LOF PUT
EOF LSET/RSET UNLOCK
ET  MKD$

5.3.1 Creating a Random Access File

The following program steps are required to create a random data file:

 1. Open the file for random access (R) mode. The following example
 specifies a record length of 32 bytes. If the record length is omitted, the
 default is 128 bytes.

 OPEN "R",#1,"filename",32

 2. Use the FIELD statement to allocate space in the random buffer for the
 variables that will be written to the random file:

 FIELD#1,20 AS N$,4 AS A$,8 AS P$



GW-BASIC User's Guide                                                                                                                                         - 27 -

 In this example, the first 20 positions (bytes) in the random file buffer
 are allocated to the string variable N$. The next 4 positions are allo-
 cated to A$; the next 8 to P$.

 3. Use LSET or RSET to move the data into the random buffer fields in
 left- or right-justified format (L=left SET;R=right SET). Numeric
 values must be made into strings when placed in the buffer. MKI$ con-
 verts an integer value into a string; MKS$ converts a single-precision
 value, and MKD$ converts a double-precision value.

 LSET N$=X$
 LSET A$=MKS$(AMT)
 LSET P$=TEL$

 4. Write the data from the buffer to the diskette using the PUT statement:

 PUT #1,CODE%

The program in Example 4 takes information keyed as input at the terminal
and writes it to a random access data file. Each time the PUT statement is
executed, a record is written to the file. In the example, the 2-digit CODE%
input in line 30 becomes the record number.

Note

 Do not use a fielded string variable in an INPUT or LET statement. This
 causes the pointer for that variable to point into string space instead of
 the random file buffer.

Example 4

10 OPEN "R",#1,"INFOFILE",32
20 FIELD#1,20 AS N$, 4 AS A$, 8 AS P$
30 INPUT "2-DIGIT CODE";CODE%
40 INPUT "NAME";X$
50 INPUT "AMOUNT";AMT
60 INPUT "PHONE";TEL$:PRINT
70 LSET N$=X$
80 LSET A$=MKS$(AMT)
90 LSET P$=TEL$
100 PUT #1,CODE%
110 GOTO 30



GW-BASIC User's Guide                                                                                                                                         - 28 -

5.3.2 Accessing a Random Access File

The following program steps are required to access a random file:

 1. Open the file in R mode:

 OPEN "R",#1,"filename",32

 2. Use the FIELD statement to allocate space in the random buffer for the
 variables that will be read from the file:

 FIELD, #1, 20 AS N$, 4 AS A$, 8 AS P$

 In this example, the first 20 positions (bytes) in the random file buffer
 are allocated to the string variable N$. The next 4 positions are allo-
 cated to A$; the next 8 to P$.

 Note

 In a program that performs both INPUT and OUTPUT on the same
 random file, you can often use just one OPEN statement and one
 FIELD statement.

 3. Use the GET statement to move the desired record into the random
 buffer.

 GET #1,CODE%

 The data in the buffer can now be accessed by the program.

 4. Convert numeric values back to numbers using the convert functions:
 CVI for integers, CVS for single-precision values, and CVD for double-
 precision values.

 PRINT N$
 PRINT CVS(A$)
 .
 .
 .

The program in Example 5 accesses the random file, infofile, that was created
In Example 4. By inputting the 3-digit code, the information associated with
that code is read from the file and displayed.

Example 5

10 OPEN "R",#1,"INFOFILE",32
20 FIELD #1, 20 AS N$, 4 AS A$, 8 AS P$
30 INPUT "2-DIGIT CODE";CODE%
40 GET #1, CODE%
50 PRINT N$
60 PRINT USING "$$###.##";CVS(A$)
70 PRINT P$:PRINT
80 GOTO 30



GW-BASIC User's Guide                                                                                                                                         - 29 -

With random files, the LOC function returns the current record number. The
current record number is the last record number used in a GET or PUT state-
ment. For example, the following line ends program execution if the current
record number in file#1 is higher than 99:

IF LOC(1)>99 THEN END

Example 6 is an inventory program that illustrates random file access. In this
program, the record number is used as the part number, and it is assumed that
the inventory will contain no more than 100 different part numbers.

Lines 900-960 initialize the data file by writing CHR$(255) as the first
character of each record. This is used later (line 270 and line 500) to
determine whether an entry already exists for that part number.

Lines 130-220 display the different inventory functions that the program per-
forms. When you type in the desired function number, line 230 branches to the
appropriate subroutine.

Example 6

120 OPEN"R",#1,"INVEN.DAT",39
125 FIELD#1,1 AS F$,30 AS D$, 2 AS Q$,2 AS R$,4 AS P$
130 PRINT:PRINT "FUNCTIONS:":PRINT
135 PRINT 1,"INITIALIZE FILE"
140 PRINT 2,"CREATE A NEW ENTRY"
150 PRINT 3,"DISPLAY INVENTORY FOR ONE PART"
160 PRINT 4,"ADD TO STOCK"
170 PRINT 5,"SUBTRACT FROM STOCK"
180 PRINT 6,"DISPLAY ALL ITEMS BELOW REORDER LEVEL"
220 PRINT:PRINT:INPUT"FUNCTION";FUNCTION
225 IF (FUNCTION<1)OR(FUNCTION>6) THEN PRINT "BAD FUNCTION
NUMBER":GOTO 130
230 ON FUNCTION GOSUB 900,250,390,480,560,680
240 GOTO 220
250 REM BUILD NEW ENTRY
260 GOSUB 840
270 IF ASC(F$) < > 255 THEN INPUT"OVERWRITE";A$:
 IF A$ < > "Y" THEN RETURN
280 LSET F$=CHR$(0)
290 INPUT "DESCRIPTION";DESC$
300 LSET D$=DESC$
310 INPUT "QUANTITY IN STOCK";Q%
320 LSET Q$=MKI$(Q%)
330 INPUT "REORDER LEVEL";R%
340 LSET R$=MKI$(R%)
350 INPUT "UNIT PRICE";P
360 LSET P$=MKS$(P)
370 PUT#1,PART%
380 RETURN
390 REM DISPLAY ENTRY
400 GOSUB 840
410 IF ASC(F$)=255 THEN PRINT "NULL ENTRY":RETURN
420 PRINT USING "PART NUMBER ###";PART%
430 PRINT D$
440 PRINT USING "QUANTITY ON HAND #####";CVI(Q$)



GW-BASIC User's Guide                                                                                                                                         - 30 -

450 PRINT USING "REORDER LEVEL #####";CVI(R$)
460 PRINT USING "UNIT PRICE $$##.##";CVS(P$)
470 RETURN
480 REM ADD TO STOCK
490 GOSUB 840
500 IF ASC(F$)=255 THEN PRINT "NULL ENTRY":RETURN
510 PRINT D$:INPUT "QUANTITY TO ADD";A%
520 Q%=CVI(Q$)+A%
530 LSET Q$=MKI$(Q%)
540 PUT#1,PART%
550 RETURN
560 REM REMOVE FROM STOCK
570 GOSUB 840
580 IF ASC(F$)=255 THEN PRINT "NULL ENTRY":RETURN
590 PRINT D$
600 INPUT "QUANTITY TO SUBTRACT";S%
610 Q%=CVI(Q$)
620 IF (Q%-S%)<0 THEN PRINT "ONLY";Q%;" IN STOCK" :GOTO 600
630 Q%=Q%-S%
640 IF Q%= < CVI(R$) THEN PRINT "QUANTITY NOW";Q%;
"REORDER LEVEL";CVI(R$)
650 LSET Q$=MKI$(Q%)
660 PUT#1,PART%
670 RETURN
680 REM DISPLAY ITEMS BELOW REORDER LEVEL4
690 FOR I=1 TO 100
710 GET#1,I
720 IF CVI(Q$)<CVI(R$) THEN PRINT D$;" QUANTITY";
CVI(Q$) TAB(50) "REORDER LEVEL";CVI(R$)
730 NEXT I
740 RETURN
840 INPUT "PART NUMBER";PART%
850 IF(PART% < 1)OR(PART% > 100) THEN PRINT "BAD PART NUMBER":
GOTO 840 ELSE GET#1,PART%:RETURN
890 END
900 REM INITIALIZE FILE
910 INPUT "ARE YOU SURE";B$:IF B$ < > "Y" THEN RETURN
920 LSET F$=CHR$(255)
930 FOR I=1 TO 100
940 PUT#1,I
950 NEXT I
960 RETURN

6 Constants, Variables, Expressions and Operators
After you have learned the fundamentals of programming in GW-BASIC, you will
find that you will want to write more complex programs. The information in
this chapter will help you learn more about the use of constants, variables,
expressions, and operators in GW-BASIC, and how they can be used to develop
more sophisticated programs.



GW-BASIC User's Guide                                                                                                                                         - 31 -

6.1 Constants
Constants are static values the GW-BASIC Interpreter uses during execution of
your program. There are two types of constants: string and numeric.

A string constant is a sequence of 0 to 255 alphanumeric characters enclosed
in double quotation marks. The following are sample string constants:

"HELLO"
"$25,000.00"
"Number of Employees"

Numeric constants can be positive or negative. When entering a numeric con-
stant in GW-BASIC, you should not type the commas. For instance, if the number
10,000 were to be entered as a constant, it would be typed as 10000. There are
five types of numeric constants: integer, fixed-point, floating-point,
hexadecimal, and octal.

Constant        Description

Integer         Whole numbers between -32768 and +32767.  They do not contain
                Decimal points.

Fixed-Point     Positive or negative real numbers that contain decimal points.

Floating-Point  Positive or negative numbers represented in
                exponential form (similar to scientific notation).
                A floating-point constant consists of an optionally-signed
                integer or fixed-point number (the mantissa), followed by the
                letter E and an optionally-signed integer (the exponent).

                The allowable range for floating-point constants  is
                3.0X10 -39  to 1.7X10 38.

                For example:

                235.988E-7=.0000235988
                2359E6=2359000000

 Hexadecimal    Hexadecimal numbers with prefix &H. For example:

                &H76
                &H32F

 Octal          Octal numbers with the prefix &O or &. For example:

                &O347
                &1234

6.1.1 Single- and Double-Precision Form for Numeric Constants

Numeric constants can be either integers, single-precision or double-precision
numbers. Integer constants are stored as whole numbers only. Single-precision
numeric constants are stored with 7 digits (although only 6 may be accurate).
Double-precision numeric constants are stored with 17 digits of precision, and



GW-BASIC User's Guide                                                                                                                                         - 32 -

printed with as many as 16 digits.

A single-precision constant is any numeric constant with either

 o Seven or fewer digits

 o Exponential form using E

 o A trailing exclamation point (!)

A double-precision constant is any numeric constant with either

 o Eight or more digits

 o Exponential form using D

 o A trailing number sign (#)

The following are examples of single- and double-precision numeric constants:

 Single-Precision Constants    Double-Precision Constants

 46.8                          345692811

 -1.09E-06                     -1.09432D-06

 3489.0                        3490.0#

 22.5!                         7654321.1234

6.2 Variables
Variables are the names that you have chosen to represent values used in a
GW-BASIC program. The value of a variable may be assigned specifically, or may
be the result of calculations in your program. If a variable is assigned no
value, GW-BASIC assumes the variable's value to be zero.

6.2.1 Variable Names and Declarations

GW-BASIC variable names may be any length; up to 40 characters are
significant. The characters allowed in a variable name are letters, numbers,
and the decimal point. The first character in the variable name must be a
letter. Special type declaration characters are also allowed.

Reserved words (all the words used as GW-BASIC commands, statements,
functions, and operators) can't be used as variable names. However, if the
reserved word is embedded within the variable name, it will be allowed.

Variables may represent either numeric values or strings.



GW-BASIC User's Guide                                                                                                                                         - 33 -

6.2.2 Type Declaration Characters

Type declaration characters indicate what a variable represents. The following
type declaration characters are recognized:

 $ String variable

 % Integer variable

 ! Single-precision variable

 # Double-precision variable

The following are sample variable names for each type:

 Variable Type                Sample Name

 String variable              N$

 Integer variable             LIMIT%

 Single-precision variable    MINIMUM!

 Double-precision variable    Pl#

The default type for a numeric variable name is single-precision. Double-
precision, while very accurate, uses more memory space and more calculation
time. Single-precision is sufficiently accurate for most applications.
However, the seventh significant digit (if printed) will not always be
accurate. You should be very careful when making conversions between integer,
single-precision, and double-precision variables.

The following variable is a single-precision value by default:

ABC

Variables beginning with FN are assumed to be calls to a user-defined
function.

The GW-BASIC statements DEFINT, DEFSTR, DEFSNG, and DEFDBL may be included in
a program to declare the types of values for certain variable names.

6.2.3 Array Variables

An array is a group or table of values referenced by the same variable name.
Each element in an array is referenced by an array variable that is a
subscripted integer or an integer expression. The subscript is enclosed within
parentheses.  An array variable name has as many subscripts as there are
dimensions in the array.

For example,

V(10)

references a value in a one-dimensional array, while



GW-BASIC User's Guide                                                                                                                                         - 34 -

T(1,4)

references a value in a two-dimensional array.

The maximum number of dimensions for an array in GW-BASIC is 255. The max-
imum number of elements per dimension is 32767.

Note

 If you are using an array with a subscript value greater than 10, you should
 use the DIM statement. Refer to the GW-BASIC User's Reference for more
 information. If a subscript greater than the maximum specified is used, you
 will receive the error message "Subscript out of range."

Multidimensional arrays (more than one subscript separated by commas) are
useful for storing tabular data. For example, A(1,4) could be used to
represent a two-row, five-column array such as the following:

 Column 0 1 2 3 4

 Row 0 10 20 30 40 50
 Row 1 60 70 80 90 100

In this example, element A(1,2)=80 and A(0,3)=40.

Rows and columns begin with 0, not 1, unless otherwise declared. For more
information, see the OPTION BASE statement in the GW-BASIC User's Refer-
ence.

6.2.4 Memory Space Requirements for Variable Storage

The different types of variables require different amounts of storage.
Depending on the storage and memory capacity of your computer and the size of
the program that you are developing, these can be important considerations.

 Variable Type               Required Bytes of Storage

 Integer                     2

 Single-precision            4

 Double-precision            8

 Integer array               2 per element

 Single-precision array      4 per element

 Double-precision array      8 per element

 Strings                     Three bytes overhead, plus the present
                             contents of the string as one byte for each
                             character in the string. Quotation marks
                             marking the beginning and end of each string
                             are not counted.



GW-BASIC User's Guide                                                                                                                                         - 35 -

6.3 Type Conversion
When necessary, GW-BASIC converts a numeric constant from one type of vari-
able to another, according to the following rules:

 o If a numeric constant of one type is set equal to a numeric variable of a
   different type, the number is stored as the type declared in the variable
   name. For example:

   10 A% = 23.42
   20 PRINT A%
   RUN
   23

   If a string variable is set equal to a numeric value or vice versa, a
   "Type Mismatch" error occurs.

 o During an expression evaluation, all of the operands in an arithmetic or
   relational operation are converted to the same degree of precision; that
   is, that of the most precise operand. Also, the result of an arithmetic
   operation is returned to this degree of precision. For example:

  10 D# = 6#/7
  20 PRINT D#
  RUN
  .8571428571428571

   The arithmetic is performed in double-precision, and the result is
   returned in D# as a double-precision value.

   10 D = 6#/7
   20 PRINT D
   RUN

   The arithmetic is performed in double-precision, and the result is
   returned to D (single-precision variable) rounded and printed as a
   single-precision value.

 o Logical operators convert their operands to integers and return an
   integer result. Operands must be within the range of -32768 to 32767
   or an "Overflow" error occurs.

 o When a floating-point value is converted to an integer, the fractional
   portion is rounded.

   For example:

   10 C% = 55.88
   20 PRINT C%
   RUN
    56

 o If a double-precision variable is assigned a single-precision value, only
   the first seven digits (rounded), of the converted number are valid. This
   is because only seven digits of accuracy were supplied with the single-
   precision value. The absolute value of the difference between the printed
   double-precision number, and the original single-precision value, is less



GW-BASIC User's Guide                                                                                                                                         - 36 -

   than 6.3E-8 times the original single-precision value.

   For example:

   10 A = 2.04
   20 B# = A
   30 PRINT A;B#
   RUN
   2.04 2.039999961853027

6.4 Expressions and Operators
An expression may be simply a string or numeric constant, a variable, or it
may combine constants and variables with operators to produce a single value.

Operators perform mathematical or logical operations on values. The operators
provided by GW-BASIC are divided into four categories:

o Arithmetic

o Relational

o Logical

o Functional

6.4.1 Arithmetic Operators

The following are the arithmetic operators recognized by GW-BASIC. They
appear in order of precedence.

Operator  Operation

^         Exponentiation
-         Negation
*         Multiplication
/         Floating-point Division
+         Addition
-         Subtraction

Operations within parentheses are performed first. Inside the parentheses, the
usual order of precedence is maintained.

The following are sample algebraic expressions and their GW-BASIC
counterparts:



GW-BASIC User's Guide                                                                                                                                         - 37 -

Algebraic   BASIC
Expression  Expression

X-Z/Y       (X-Y)/Z

XY/Z        X*Y/Z

X+Y/Z       (X+Y)/Z

(X2)Y       (X^2)^Y

XYZ         X^(Y^Z)

X(-Y)       X*(-Y)

Two consecutive operators must be separated by parentheses.

6.4.1.1 Integer Division and Modulus Arithmetic

Two additional arithmetic operators are available: integer division and
modulus arithmetic.

Integer division is denoted by the backslash (\). The operands are rounded to
integers (must be within the range of -32768 to 32767) before the division is
performed, and the quotient is truncated to an integer.

The following are examples of integer division:

10\4 = 2
25.68\6.99 = 3

In the order of occurrence within GW-BASIC, the integer division will be per-
formed just after floating-point division.

Modulus arithmetic is denoted by the operator MOD. It gives the integer value
that is the remainder of an integer division.

The following are examples of modulus arithmetic:

10.4 MOD 4 = 2
(10/4=2 with a remainder 2)

25.68 MOD 6.99 = 5
(26/7=3 with a remainder 5)

In the order of occurrence within GW-BASIC, modulus arithmetic follows integer
division. The INT and FIX functions, described in the GW-BASIC User's Refer-
ence, are also useful in modulus arithmetic.



GW-BASIC User's Guide                                                                                                                                         - 38 -

6.4.1.2 Overflow and Division by Zero

If, during the evaluation of an expression, a division by zero is encountered,
the "Division by zero" error message appears, machine infinity with the sign
of the numerator is supplied as the result of the division, and execution
continues.

If the evaluation of an exponentiation results in zero being raised to a
negative power, the "Division by Zero" error message appears, positive machine
infinity is supplied as the result of the exponentiation, and execution
continues.

If overflow occurs, the "Overflow" error message appears, machine infinity
with the algebraically correct sign is supplied as the result, and execution
continues. The errors that occur in overflow and division by zero will not be
trapped by the error trapping function.

6.4.2 Relational Operators

Relational operators let you compare two values. The result of the comparison
is either true (-1) or false (0). This result can then be used to make a
decision regarding program flow.

Table 6-1 displays the relational operators.

Table 6.1: Relational Operators

Operator  Relation                   Tested Expression
=         Equality                   X=Y
<>        Inequality                 X<>Y
<         Less than                  X<Y
>         Greater than               X>Y
<=        Less than or equal to      X<=Y
>=        Greater than or equal to   X>=Y

The equal sign is also used to assign a value to a variable. See the LET state
ment in the GW-BASIC User's Reference.

When arithmetic and relational operators are combined in one expression, the
arithmetic is always performed first:

X+Y < (T-1)/Z

This expression is true if the value of X plus Y is less than the value of T-1
divided by Z.

6.4.3 Logical Operators

Logical operators perform tests on multiple relations, bit manipulation, or
boolean operations. The logical operator returns a bit-wise result which is
either true (not zero) or false (zero). In an expression, logical operations
are performed after arithmetic and relational operations. The outcome of a
logical operation is determined as shown in the following table. The operators



GW-BASIC User's Guide                                                                                                                                         - 39 -

are listed in order of precedence.

Table 6.2: Results Returned by Logical Operations

Operation Value Value Result

NOT          X              NOT X
        _______________________________
             T               F
             F               T

AND         X        Y      X AND Y
  _______________________________

            T        T         T
            F        F         F
            F        T         F
            F        F         F

OR          X        Y      X OR Y
  _______________________________

            T        T         T
            T        F         T
            F        T         T
            F        F         F

XOR         X        Y      X XOR Y
  _______________________________

            T        T         F
            T        F         T
            F        T         T
            F        F         F

EQV         X        Y      X EQV Y
  _______________________________

            T        T         T
            T        F         F
            F        T         F
            F        F         T

IMP         X        Y      X IMP Y
  ______________________________

            T        T         T
            T        F         F
            F        T         T
            F        F         T

Just as the relational operators can be used to make decisions regarding pro-
gram flow, logical operators can connect two or more relations and return a



GW-BASIC User's Guide                                                                                                                                         - 40 -

true or false value to be used in a decision. For example:

IF D<200 AND F<4 THEN 80
IF I>10 OR K<0 THEN 50
IF NOT P THEN 100

Logical operators convert their operands to 16-bit, signed, two's complement
integers within the range of -32768 to +32767 (if the operands are not
within this range, an error results). If both operands are supplied as 0 or

-1, logical operators return 0 or -1. The given operation is performed on
these integers in bits; that is, each bit of the result is determined by the
corresponding bits in the two operands.

Thus, it is possible to use logical operators to test bytes for a particular
bit pattern. For instance, the AND operator may be used to mask all but one of
the bits of a status byte at a machine I/O port. The OR operator may be used
to merge two bytes to create a particular binary value. The following examples
demonstrate how the logical operators work:

Example           Explanation

63 AND 16 = 16    63 = binary 111111 and 16 = binary 10000, so 63
                  AND 16 = 16

15 AND 14 = 14    15 = binary 1111 and 14 = binary 1110, so 15 AND
                  14 = 14 (binary 1110)

-1 AND 8 = 8      -1 = binary 1111111111111111 and 8 = binary 1000,
                  so -1 AND 8 = 8

4 OR 2 = 6        4 = binary 100 and 2 = binary 10, so 4 OR 2 = 6
                  (binary 110)

10 OR 10 = 10    10 = binary 1010, so 1010 OR 1010 =1010 (10)

-1 OR –2 = -1    -1 = binary 1111111111111111 and -2 = binary
                 1111111111111110,so -1 OR -2 = -1. The bit comple-
                  ment of 16 zeros is 16 ones, which is the two's com-
                 plement representation of -1.

NOT X = -(X+1)   The two's complement of any integer is the bit com-
                 plement plus one.

6.4.4 Functional Operators

A function is used in an expression to call a predetermined operation that is
To be performed on an operand. GW-BASIC has intrinsic functions that reside in
the system, such as SQR (square root) or SIN (sine).

GW-BASIC also allows user-defined functions written by the programmer. See the
DEF FN statement in the GW-BASIC User's Reference.



GW-BASIC User's Guide                                                                                                                                         - 41 -

6.4.5 String Operators

To compare strings, use the same relational operators used with numbers:

Operator  Meaning

=         Equal to

<>        Unequal

<         Less than

>         Greater than

<=        Less than or equal to

>=        Greater than or equal to

The GW-BASIC Interpreter compares strings by taking one character at a time
from each string and comparing their ASCII codes. If the ASCII codes in each
string are the same, the strings are equal. If the ASCII codes differ, the
lower code number will precede the higher code. If the interpreter reaches the
end of one string during string comparison, the shorter string is said to be
smaller, providing that both strings are the same up to that point. Leading
and trailing blanks are significant.

For example:

"AA" < "AB"
"FILENAME" = "FILENAME"
"X&" > "X#"
"CL " > "CL"
"kg" > "KG"
"SMYTH" < "SMYTHE"
B$ < "9/12/78" where B$ = "8/12/78"

String comparisons can also be used to test string values or to alphabetize
strings. All string constants used in comparison expressions must be enclosed
in quotation marks.

Strings can be concatenated by using the plus (+) sign. For example:

10 A$="FILE":B$="NAME"
20 PRINT A$+B$
30 PRINT "NEW " + A$+B$
RUN
FILENAME
NEW FILENAME



GW-BASIC User's Guide                                                                                                                                         - 42 -

7 Appendix A - Error Codes and Messages
Code: Message:

1 NEXT without FOR

 NEXT statement does not have a corresponding FOR state-
 ment. Check variable at FOR statement for a match with the
 NEXT statement variable.

2 Syntax error

 A line is encountered that contains an incorrect sequence of
 characters (such as unmatched parentheses, a misspelled com-
 mand or statement, incorrect punctuation). This error causes
 GW-BASIC to display the incorrect line in edit mode.

3 RETURN without GOSUB

 A RETURN statement is encountered for which there is no pre-
 vious GOSUB statement.

4 Out of DATA

 A READ statement is executed when there are no DATA state-
 ments with unread data remaining in the program.

5 Illegal function call

 An out-of-range parameter is passed to a math or string func-
 tion. An illegal function call error may also occur as the result
 of

 o a negative or unreasonably large subscript

 o a negative or zero argument with LOG

 o a negative argument to SQR

 o a negative mantissa with a noninteger power

 o a call to a USR function for which the starting address
   has not yet been given

 o an improper argument to MID$, LEFT$, RIGHT$, INP,
   OUT, WAIT, PEEK, POKE, TAB, SPC, STRING$,
   SPACE$, INSTR, or ON...GOTO

6 Overflow

 The result of a calculation is too large to be represented in
 GW-BASIC's number format. If underflow occurs, the result is
 zero, and execution continues without an error.



GW-BASIC User's Guide                                                                                                                                         - 43 -

7 Out of memory

 A program is too large, has too many FOR loops, GOSUBs,
 variables, or expressions that are too complicated. Use the
 CLEAR statement to set aside more stack space or memory
 area.

8 Undefined line number

 A line reference in a GOTO, GOSUB, IF-THEN...ELSE, or
 DELETE is a nonexistent line.

9 Subscript out of range

 An array element is referenced either with a subscript that is
 outside the dimensions of the array, or with the wrong number
 of subscripts.

10 Duplicate Definition

 Two DIM statements are given for the same array, or a DIM
 statement is given for an array after the default dimension of
 10 has been established for that array.

11 Division by zero

 A division by zero is encountered in an expression, or the opera-
 tion of involution results in zero being raised to a negative
 power. Machine infinity with the sign of the numerator is sup-
 plied as the result of the division, or positive machine infinity is
 supplied as the result of the involution, and execution continues.

12 Illegal direct

 A statement that is illegal in direct mode is entered as a direct
 mode command.

13 Type mismatch

 A string variable name is assigned a numeric value or vice
 versa; a function that expects a numeric argument is given a
 string argument or vice versa.

14 Out of string space

 String variables have caused GW-BASIC to exceed the amount of
 free memory remaining. GW-BASIC allocates string space dynami-
 cally until it runs out of memory.

15 String too long

 An attempt is made to create a string more than 255 characters
 long.



GW-BASIC User's Guide                                                                                                                                         - 44 -

16 String formula too complex

 A string expression is too long or too complex. Break the expres-
 sion into smaller expressions.

17 Can't continue

 An attempt is made to continue a program that

 o has halted because of an error

 o has been modified during a break in execution

 o does not exist

18 Undefined user function

 A USR function is called before the function definition (DEF
 statement) is given.

19 No RESUME

 An error-trapping routine is entered but contains no RESUME
 statement.

20 RESUME without error

 A RESUME statement is encountered before an error-trapping
 routine is entered.

21 Unprintable error

 No error message is available for the existing error condition.
 This is usually caused by an error with an undefined error code.

22 Missing operand

 An expression contains an operator with no operand following
 it.

23 Line buffer overflow

 An attempt is made to input a line that has too many charac-
 ters.

24 Device Timeout

 GW-BASIC did not receive information from an I/O device within
 a predetermined amount of time.

25 Device Fault

 Indicates a hardware error in the printer or interface card.

26 FOR Without NEXT

 A FOR was encountered without a matching NEXT.



GW-BASIC User's Guide                                                                                                                                         - 45 -

27 Out of Paper

 The printer is out of paper; or, a printer fault.

28 Unprintable error

 No error message is available for the existing error condition.
 This is usually caused by an error with an undefined error code.

29 WHILE without WEND

 A WHILE statement does not have a matching WEND.

30 WEND without WHILE

 A WEND was encountered without a matching WHILE.

31-49 Unprintable error

 No error message is available for the existing error condition.
 This is usually caused by an error with an undefined error code.

50 FIELD overflow

 A FIELD statement is attempting to allocate more bytes than
 were specified for the record length of a random file.

51 Internal error

 An internal malfunction has occurred in GW-BASIC. Report to
 your dealer the conditions under which the message appeared.

52 Bad file number

 A statement or command references a file with a file number
 that is not open or is out of range of file numbers specified at
 initialization.

53 File not found

 A LOAD, KILL, NAME, FILES, or OPEN statement references
 a file that does not exist on the current diskette.

54 Bad file mode

 An attempt is made to use PUT, GET, or LOF with a sequen-
 tial file, to LOAD a random file, or to execute an OPEN with a
 file mode other than I, O, A, or R.

55 File already open

 A sequential output mode OPEN is issued for a file that is
 already open, or a KILL is given for a file that is open.



GW-BASIC User's Guide                                                                                                                                         - 46 -

56 Unprintable error

 An error message is not available for the error condition which
 exists. This is usually caused by an error with an undefined
 error code.

57 Device I/O Error

 Usually a disk I/O error, but generalized to include all I/O dev-
 ices. It is a fatal error; that is, the operating system cannot
 recover from the error.

58 File already exists

 The filename specified in a NAME statement is identical to a
 filename already in use on the diskette.

59-60 Unprintable error

 No error message is available for the existing error condition.
 This is usually caused by an error with an undefined error code.

61 Disk full

 All disk storage space is in use.

62 Input past end

 An INPUT statement is executed after all the data in the file
 has been input, or for a null (empty) file. To avoid this error,
 use the EOF function to detect the end of file.

63 Bad record number

 In a PUT or GET statement, the record number is either
 greater than the maximum allowed (16,777,215) or equal to
 zero.

64 Bad filename

 An illegal form is used for the filename with LOAD, SAVE,
 KILL, or OPEN; for example, a filename with too many charac-
 ters.

65 Unprintable error

 No error message is available for the existing error condition.
 This is usually caused by an error with an undefined error code.

66 Direct statement in file

 A direct statement is encountered while loading a ASCII-format
 file. The LOAD is terminated.

67 Too many files

 An attempt is made to create a new file (using SAVE or OPEN)



GW-BASIC User's Guide                                                                                                                                         - 47 -

 when all directory entries are full or the file specifications are
 invalid.

68 Device Unavailable

 An attempt is made to open a file to a nonexistent device. It
 may be that hardware does not exist to support the device, such
 as lpt2: or lpt3:, or is disabled by the user. This occurs if an
 OPEN "COM1: statement is executed but the user disables RS-
 232 support with the /c: switch directive on the command line.

69 Communication buffer overflow

 Occurs when a communications input statement is executed, but
 the input queue is already full. Use an ON ERROR GOTO
 statement to retry the input when this condition occurs. Subse-
 quent inputs attempt to clear this fault unless characters con-
 tinue to be received faster than the program can process them.
 In this case several options are available:

 o Increase the size of the COM receive buffer with the /c:
 switch.

 o Implement a hand-shaking protocol with the
 host/satellite (such as: XON/XOFF, as demonstrated
 in the TTY programming example) to turn transmit off
 long enough to catch up.

 o Use a lower baud rate for transmit and receive.

70 Permission Denied

 This is one of three hard disk errors returned from the diskette
 controller.

 o An attempt has been made to write onto a diskette
   that is write protected.

 o Another process has attempted to access a file already
   in use.

 o The UNLOCK range specified does not match the
   preceding LOCK statement.

71 Disk not Ready

 Occurs when the diskette drive door is open or a diskette is not
 in the drive. Use an ON ERROR GOTO statement to recover.

72 Disk media error

 Occurs when the diskette controller detects a hardware or
 media fault. This usually indicates damaged media. Copy any
 existing files to a new diskette, and reformat the damaged
 diskette. FORMAT maps the bad tracks in the file allocation
 table. The remainder of the diskette is now usable.



GW-BASIC User's Guide                                                                                                                                         - 48 -

73 Advanced Feature

 An attempt was made to use a reserved word that is not avail-
 able in this version of GW-BASIC.

74 Rename across disks

 Occurs when an attempt is made to rename a file to a new
 name declared to be on a disk other than the disk specified for
 the old name. The naming operation is not performed.

75 Path/File Access Error

 During an OPEN, MKDIR, CHDIR, or RMDIR operation,
 MS-DOS is unable to make a correct path-to-filename connection.
 The operation is not completed.

76 Path not found

 During an OPEN, MKDIR, CHDIR, or RMDIR operation,
 MS-DOS is unable to find the path specified. The operation is not
 completed.

8 Appendix B - Mathematical Functions
Mathematical functions not intrinsic to GW-BASIC can be calculated as follows:

 Function      GW-BASIC Equivalent

 Secant        SEC(X)=1/COS(X)

 Cosecant      CSC(X)=1/SIN(X)

 Cotangent     COT(X)=1/TAN(X)

 Inverse Sine  ARCSIN(X)=ATN(X/SQR(-X*X+1))

 Inverse       ARCCOS(X)=ATN (X/SQR(-X*X+1))+ pi/2
 Cosine

 Inverse       ARCSEC(X)=ATN(X/SQR(X*X-1))+SGN(SGN(X)-1)* pi/2
 Secant

 Inverse       ARCCSC(X)=ATN(X/SQR(X*X-1))+SGN(X)-1)* pi/2
 Cosecant

 Inverse       ARCCOT(X)=ATN(X)+ pi/2
 Cotangent

 Hyperbolic    SINH(X)=(EXP(X)-EXP(-X))/2
 Sine



GW-BASIC User's Guide                                                                                                                                         - 49 -

 Function      GW-BASIC Equivalent

 Hyperbolic    COSH(X)=(EXP(X)+EXP(-X))/2
 Cosine

 Hyperbolic    TANH(X)=EXP(X)-EXP(-X))/+(EXP(X)+EXP(-X))
 Tangent

 Hyperbolic    SECH(X)=2/(EXP(X)+EXP(-X))
 Secant

 Hyperbolic    CSCH(X)=2/(EXP(X)-EXP(-X))
 Cosecant

 Hyperbolic    COTH(X)=EXP(-X)/(EXP(X)-EXP(-X))*2+1
 Cotangent

 Inverse       ARCSINH(X)=LOG(X/SQR(X*X+1))
 Hyperbolic
 Sine

 Inverse       ARCCOSH(X)=LOG(X+SQR(X*X-1))
 Hyperbolic
 Cosine

 Inverse       ARCTANH(X)=LOG((1+X)/(1-X))/2
 Hyperbolic
 Tangent

 Inverse       ARCCSCH(X)=LOG(SGN(X)*SQR(X*X+1)+1)/X
 Hyperbolic
 Cosecant

 Inverse       ARCSECH(X)=LOG(SQR(-X*X+1)+1)/X
 Hyperbolic
 Secant

 Inverse       ARCCOTH(X)=LOG((X+1)/(X-1))/2
 Hyperbolic
 Cotangent



GW-BASIC User's Guide                                                                                                                                         - 50 -

9 Appendix C - ASCII Character Codes
Dec Oct Hex Chr     Dec Oct Hex Chr
000 000 00H NUL     032 040 20H SP
001 001 01H SOH     033 041 21H !
002 002 02H STX     034 042 22H "
003 003 03H ETX     035 043 23H #
004 004 04H EOT     036 044 24H $
005 005 05H ENQ     037 045 25H %
006 006 06H ACK     038 046 26H &
007 007 07H BEL     039 047 27H '
008 010 08H BS      040 050 28H (
009 011 09H HT      041 051 29H )
010 012 0AH LF      042 052 2AH *
011 013 0BH VT      043 053 2BH +
012 014 0CH FF      044 054 2CH ,
013 015 0DH CR      045 055 2DH -
014 016 0EH SO      046 056 2EH .
015 017 0FH SI      047 057 2FH /
016 020 10H DLE     048 060 30H 0
017 021 11H DC1     049 061 31H 1
018 022 12H DC2     050 062 32H 2
019 023 13H DC3     051 063 33H 3
020 024 14H DC4     052 064 34H 4
021 025 15H NAK     053 065 35H 5
022 026 16H SYN     054 066 36H 6
023 027 17H ETB     055 067 37H 7
024 030 18H CAN     056 070 38H 8
025 031 19H EM      057 071 39H 9
026 032 1AH SUB     058 072 3AH :
027 033 1BH ESC     059 073 3BH ;
028 034 1CH FS      060 074 3CH <
029 035 1DH GS      061 075 3DH =
030 036 1EH RS      062 076 3EH >
031 037 1FH US      063 077 3FH ?



GW-BASIC User's Guide                                                                                                                                         - 51 -

Dec Oct Hex Chr     Dec Oct Hex Chr
064 100 40H @       096 140 60H `
065 101 41H A       097 141 61H a
066 102 42H B       098 142 62H b
067 103 43H C       099 143 63H c
068 104 44H D       100 144 64H d
069 105 45H E       101 145 65H e
070 106 46H F       102 146 66H f
071 107 47H G       103 147 67H g
072 110 48H H       104 150 68H h
073 111 49H I       105 151 69H i
074 112 4AH J       106 152 6AH j
075 113 4BH K       107 153 6BH k
076 114 4CH L       108 154 6CH l
077 115 4DH M       109 155 6DH m
078 116 4EH N       110 156 6EH n
079 117 4FH O       111 157 6FH o
080 120 50H P       112 160 70H p
081 121 51H Q       113 161 71H q
082 122 52H R       114 162 72H r
083 123 53H S       115 163 73H s
084 124 54H T       116 164 74H t
085 125 55H U       117 165 75H u
086 126 56H V       118 166 76H v
087 127 57H W       119 167 77H w
088 130 58H X       120 170 78H x
089 131 59H Y       121 171 79H y
090 132 5AH Z       122 172 7AH z
091 133 5BH [       123 173 7BH {
092 134 5CH \       124 174 7CH |
093 135 5DH ]       125 175 7DH }
094 136 5EH ^       126 176 7EH ~
095 137 5FH -       127 177 7FH DEL

Dec=Decimal, Oct=Octal, Hex=Hexadecimal(H), Chr=Character, LF=Line feed
FF=Form feed, CR=Carriage return, DEL=Rubout, SP=Space (Blank)

10 Appendix D -  Assembly Language (Machine Code)
Subroutines

This appendix is written primarily for users experienced in assembly language
programming.

GW-BASIC lets you interface with assembly language subroutines by using the
USR function and the CALL statement.

The USR function allows assembly language subroutines to be called in the
same way GW-BASIC intrinsic functions are called. However, the CALL statement
is recommended for interfacing machine language programs with GW-BASIC. The
CALL statement is compatible with more languages than the USR function call,
produces more readable source code, and can pass multiple arguments.



GW-BASIC User's Guide                                                                                                                                         - 52 -

10.1 Memory Allocation
Memory space must be set aside for an assembly language (or machine code)
subroutine before it can be loaded. There are three recommended ways to set
aside space for assembly language routines:

 o Specify an array and use VARPTR to locate the start of the array
   before every access.

 o Use the /m switch in the command line. Get GW-BASIC's Data segment
   (DS), and add the size of DS to reference the reserved space above the
   data segment.

 o Execute a .COM file that stays resident, and store a pointer to it in an
   unused interrupt vector location.

There are three recommended ways to load assembly language routines:

o BLOAD the file. Use DEBUG to load in an .EXE file that is in high
   memory, run GW-BASIC, and BSAVE the .EXE file.

o Execute a .COM file that contains the routines. Save the pointer to
  these routines in unused interrupt-vector locations, so that your appli-
  cation in GW-BASIC can get the pointer and use the routine(s).

o Place the routine into the specified area.

If, when an assembly language subroutine is called, more stack space is
needed, GW-BASIC stack space can be saved, and a new stack set up for use by
the assembly language subroutine. The GW-BASIC stack space must be restored,
however, before returning from the subroutine.

10.2 CALL Statement
CALL variablename[(arguments)]

variablename contains the offset in the current segment of the subroutine
being called.

arguments are the variables or constants, separated by commas, that are to be
passed to the routine.

For each parameter in arguments, the 2-byte offset of the parameter's location
within the data segment (DS) is pushed onto the stack.

The GW-BASIC return address code segment (CS), and offset (IP) are pushed onto
the stack.

A long call to the segment address given in the last DEF SEG statement and
the offset given in variablename transfers control to the user's routine.

The stack segment (SS), data segment (DS), extra segment (ES), and the stack
pointer (SP) must be preserved.



GW-BASIC User's Guide                                                                                                                                         - 53 -

The user's routine now has control. Parameters may be referenced by moving
the stack pointer (SP) to the base pointer (BP) and adding a positive offset
to BP.

Upon entry, the segment registers DS, ES, and SS all point to the address of
The segment that contains the GW-BASIC interpreter code. The code segment
register CS contains the latest value supplied by DEF SEG. If no DEF SEG has
been specified, it then points to the same address as DS, ES, and SS (the
default DEF SEG).

The following seven rules must be observed when coding a subroutine:

 1. The called routine may destroy the contents of the AX, BX, CX, DX, SI,
    DI, and BP registers. They do not require restoration upon return to
    GW-BASIC. However, all segment registers and the stack pointer must be
    restored. Good programming practice dictates that interrupts enabled
    or disabled be restored to the state observed upon entry.

2. The called program must know the number and length of the parame-
   ters passed. References to parameters are positive offsets added to BP,
   assuming the called routine moved the current stack pointer into BP;
   that is, MOV BP,SP. When 3 parameters are passed, the location of PO
   is at BP+10, P1 is at BP+8, and P2 is at BP+6.

3. The called routine must do a RETURN n (n is two times the number of
   parameters in the argument list) to adjust the stack to the start of the
   calling sequence. Also, programs must be defined by a PROC FAR
   statement.

4. Values are returned to GW-BASIC by including in the argument list the
   variable name that receives the result.

5. If the argument is a string, the parameter offset points to three bytes
   called the string descriptor. Byte 0 of the string descriptor contains the
   length of the string (0 to 255). Bytes 1 and 2, respectively, are the lower
   and upper eight bits of the string starting address in string space.

   Note

   The called routine must not change the contents of any of the three
   bytes of the string descriptor.

6. Strings may be altered by user routines, but their length must not be
   changed. GW-BASIC cannot correctly manipulate strings if their lengths
   are modified by external routines.

 7. If the argument is a string literal in the program, the string descriptor
   points to program text. Be careful not to alter or destroy your program
   this way. To avoid unpredictable results, add +"" to the string literal in
   the program. For example, the following line forces the string literal to
   be copied into string space allocated outside of program memory space:

   20 A$="BASIC"+""

   The string can then be modified without affecting the program.



GW-BASIC User's Guide                                                                                                                                         - 54 -

Examples:

100 DEF SEG=&H2000
110 ACC=&H7FA
120 CALL ACC(A,B$,C)
.
.
.

Line 100 sets the segment to 2000 hex. The value of variable ACC is added into
the address as the low word after the DEF SEG value is left-shifted four bits
(this is a function of the microprocessor, not of GW-BASIC). Here, ACC is set
to &H7FA, so that the call to ACC executes the subroutine at location 2000:7FA
hex.

Upon entry, only 16 bytes (eight words) remain available within the allocated
stack space. If the called program requires additional stack space, then the
user program must reset the stack pointer to a new allocated space. Be sure to
restore the stack pointer adjusted to the start of the calling sequence on
return to GW-BASIC.

The following assembly language sequence demonstrates access of the parame-
ters passed and storage of a return result in the variable C.

Note

 The called program must know the variable type for numeric parameters
 passed. In these examples, the following instruction copies only two bytes:

 MOVSW

 This is adequate if variables A and C are integer. It would be necessary to
 copy four bytes if they were single precision, or copy eight bytes if they
 were double precision.

MOV BP,SP Gets the current stack position in BP
MOV BX,8[BP] Gets the address of B$ description
MOV CL,[BX] Gets the length of B$ in CL
MOV DX,1[BX] Gets the address of B$ string descriptor in DX
MOV SI,10[BP] Gets the address of A in SI
MOV DI,6[BP] Gets the pointer to C in DI
MOVSW Stores variable A in 'C'
RET 6 Restores stack; returns



GW-BASIC User's Guide                                                                                                                                         - 55 -

10.3  USR Function Calls
Although the CALL statement is the recommended way of calling assembly
language subroutines, the USR function call is still available for
compatibility with previously-written programs.

Syntax:

USR[n](argument)

n        is a number from 0 to 9 which specifies the USR routine being called
         (see DEF USR statement). If n is omitted, USR0 is assumed.

argument is any numeric or string expression.

In GW-BASIC a DEF SEG statement should be executed prior to a USR function
call to ensure that the code segment points to the subroutine being called.
The segment address given in the DEF SEG statement determines the starting
segment of the subroutine.

For each USR function call, a corresponding DEF USR statement must have
been executed to define the USR function call offset. This offset and the
currently active DEF SEG address determine the starting address of the subrou-
tine.

When the USR function call is made, register AL contains the number type flag
(NTF), which specifies the type of argument given. The NTF value may be one
of the following:

NTF Value   Specifies

2           a two-byte integer (two's complement format)

3           a string

4           a single-precision floating point number

8           a double-precision floating point number

If the argument of a USR function call is a number (AL<>73), the value of the
argument is placed in the floating-point accumulator (FAC). The FAC is 8 bytes
long and is in the GW-BASIC data segment. Register BX will point at the fifth
byte of the FAC. Figure D.3 shows the representation of all the GW-BASIC
number types in the FAC:

If the argument is a single-precision floating-point number:

o BX+3 is the exponent, minus 128. The binary point is to the left of the most
  significant bit of the mantissa.

o BX+2 contains the highest seven bits of mantissa with leading 1 suppressed
  (implied). Bit 7 is the sign of the number (0=positive, 1=negative).

o BX+1 contains the middle 8 bits of the mantissa.



GW-BASIC User's Guide                                                                                                                                         - 56 -

o BX+0 contains the lowest 8 bits of the mantissa.

If the argument is an integer:

o BX+1 contains the upper eight bits of the argument.

o BX+0 contains the lower eight bits of the argument.

If the argument is a double-precision floating-point number:

o BX+0 through BX+3 are the same as for single precision floating point.

o BX-1 to BX-4 contain four more bytes of mantissa. BX-4 contains the lowest
  eight bits of the mantissa.

If the argument is a string (indicated by the value 3 stored in the AL
register) the (DX) register pair points to three bytes called the string
descriptor. Byte 0 of the string descriptor contains the length of the string
(0 to 255). Bytes 1 and 2, respectively, are the lower- and upper-eight bits
of the string starting address in the GW-BASIC data segment.

If the argument is a string literal in the program, the string descriptor
points to program text. Be careful not to alter or destroy programs this way
(see the preceding CALL statement).

Usually, the value returned by a USR function call is the same type (integer,
string, single precision, or double precision) as the argument that was passed
to it. The registers that must be preserved are the same as in the CALL
statement.

A far return is required to exit the USR subroutine. The returned value must
be stored in the FAC.

10.4 Programs That Call Assembly Language Programs
This section contains two sample GW-BASIC programs that

o load an assembly language routine to add two numbers together

o return the sum into memory

o remain resident in memory

The code segment and offset to the first routine is stored in interrupt vector
at 0:100H.

Example 1 calls an assembly language subroutine:



GW-BASIC User's Guide                                                                                                                                         - 57 -

Example 1

10 DEF SEG=0
100 CS=PEEK(&H102)+PEEK(&H103)*256
200 OFFSET=PEEK(&H100)+PEEK(&H101)*256
250 DEF SEG
300 C1%=2:C2%=3:C3%=0
400 TWOSUM=OFFSET
500 DEF SEG=CS
600 CALL TWOSUM(C1%,C2%,C3%)
700 PRINT C3%
800 END

The assembly language subroutine called in the above program must be assem-
bled, linked, and converted to a .COM file. The program, when executed prior
to the running of the GW-BASIC program, will remain in memory until the system
power is turned off, or the system is rebooted.

0100 org 100H
0100 double segment
 assume cs:double
0100 EB 17 90 start: jmp start1
0103 usrprg proc far
0103 55 push bp
0104 8B EC mov bp,sp
0106 8B 76 08 mov si,[bp]+8 ;get address of
                            ;parameter b
0109 8B 04 mov ax,[si] ;get value of b
010B 8B 76 0A mov si,[bp]+10 ;get address of
                            ;parameter a
010E 03 04 add ax,[si] ;add value of
                            ;a to value of
                            ;b
0110 8B 7E 06 mov di,[bp]+6 ;get address of
                            ;parameter c
0113 89 05 mov di,ax ;store sum in
                            ;parameter c

0115 5D pop bp
0116 ca 0006 ret 6
0119 usrprg endp
                            ;
                            ;Program to put procedure
                            ;in memory and remain
                            ;resident. The offset and
                            ;segment are stored in
                            ;location 100-103H.
0119 start1:
0119 B8 0000 mov ax,0
011C 8E D8 mov ds,ax ;data segment to 0000H
011E BB 0100 mov bx,0100H ;pointer to int vector 100H
0121 83 7F 02 0 cmp word ptr [bx],0
0125 75 16 jne quit ;program
                            ;already run,
                            ;exit
0127 83 3F 00 cmp word ptr2 [bx],0



GW-BASIC User's Guide                                                                                                                                         - 58 -

012A 75 11 jne quit ;program
                            ;already run,
                            ;exit
012C B8 0103 R mov ax,offset usrprg
012F 89 07 mov [bx],ax ;program offset
0131 8C c8 mov ax,cs
0133 89 47 02 mov [bx+2],ax ;data segment
0136 0E push cs
0137 1F pop ds
0138 BA 0141 R mov dx,offset veryend
013B CD 27 int 27h
013D quit:
013D CD 20 int 20h
013F veryend:
013F double ends
 end start

Example 2 places the assembly language subroutine in the specified area:

Example 2

10 I=0:JC=0
100 DIM A%(23)
150 MEM%=VARPTR(A%(1))
200 FOR I=1 TO 23
300 READ JC
400 POKE MEM%,JC
450 MEM%=MEM%+1
500 NEXT
600 C1%=2:C2%=3:C3%=0
700 TWOSUM=VARPTR(A%(1))
800 CALL TWOSUM(C1%,C2%,C3%)
900 PRINT C3%
950 END
1000 DATA &H55,&H8b,&Hec &H8b,&H76,&H08,&H8b,&H04,&H8b,&H76
1100 DATA &H0a,&H03,&H04,&H8b,&H7e,&H06,&H89,&H05,&H5d
1200 DATA &Hca,&H06,&H00

11  Appendix E - Converting BASIC Programs to GW-
BASIC

Programs written in a BASIC language other than GW-BASIC may require some
minor adjustments before they can be run. The following sections describe
these
adjustments.

11.1 String Dimensions
Delete all statements used to declare the length of strings. A statement such
As the following:

DIM A$(I,J)



GW-BASIC User's Guide                                                                                                                                         - 59 -

which dimensions a string array for J elements of length I, should be
converted to the following statement:

DIM A$(J)

Some GW-BASIC languages use a comma or ampersand (&) for string concatena-
tion. Each of these must be changed to a plus sign (+), which is the operator
for GW-BASIC string concatenation.

In GW-BASIC, the MID$, RIGHT$, and LEFT$ functions are used to take sub-
strings of strings. Forms such as A$(I) to access the Ith character in A$, or
A$(I,J) to take a substring of A$ from position I to position J, must be
Changed as follows:

 Other BASIC:   GW-BASIC:

 X$=A$(I)       X$=MID$(A$,I,1)

 X$=A$(I,J)     X$=MID$(A$,I,J-I+1)

If the substring reference is on the left side of an assignment, and X$ is
used to replace characters in A$, convert as follows:

 Other BASIC:   GW-BASIC:

 A$(I)=X$       MID$(A$,I,1)=X$

 A$(I,J)=X$     MID$(A$,I,J-I+1)=X$

11.2  Multiple Assignments
Some BASIC languages allow statements of the following form to set B and C
equal to zero:

10 LET B=C=0

GW-BASIC would interpret the second equal sign as a logical operator and set B
equal to -1 if C equaled 0. Convert this statement to two assignment state-
ments:

10 C=0:B=0

11.3   Multiple Statements
Some GW-BASIC languages use a backslash (\) to separate multiple statements on
a line. With GW-BASIC, be sure all elements on a line are separated by a colon
(:).



GW-BASIC User's Guide                                                                                                                                         - 60 -

11.4   MAT Functions
Programs using the MAT functions available in some BASIC languages must
be rewritten using FOR-NEXT loops to execute properly.

11.5   FOR-NEXT Loops
Some BASIC languages will always execute a FOR-NEXT loop once, regard-
less of the limits. GW-BASIC checks the limits first and does not execute the
loop if past limits.

12  Appendix F - Communications
This appendix describes the GW-BASIC statements necessary to support RS-232
asynchronous communications with other computers and peripheral devices.

12.1  Opening Communications Files
The OPEN COM statement allocates a buffer for input and output in the same
manner as the OPEN statement opens disk files.

12.2  Communications I/O
Since the communications port is opened as a file, all I/O statements valid
for disk files are valid for COM.

COM sequential input statements are the same as those for disk files:

INPUT#
LINE INPUT#
INPUT$

COM sequential output statements are the same as those for diskette:

PRINT#
PRINT# USING

See the GW-BASIC User's Reference for more information on these statements.

12.3  The COM I/O Functions
The most difficult aspect of asynchronous communications is processing charac-
ters as quickly as they are received. At rates above 2400 baud (bps), it is
necessary to suspend character transmission from the host long enough for the
receiver to catch up. This can be done by sending XOFF (CTRL-S) to the host to
temporarily suspend transmission, and XON (CTRL-Q) to resume, if the applica-
tion supports it.



GW-BASIC User's Guide                                                                                                                                         - 61 -

GW-BASIC provides three functions which help to determine when an overrun
condition is imminent:

 LOC(x) Returns the number of characters in the input queue
 waiting to be read. The input queue can hold more
 than 255 characters (determined by the /c: switch). If
 there are more than 255 characters in the queue,
 LOC(x) returns 255. Since a string is limited to 255
 characters, this practical limit alleviates the need for
 the programmer to test for string size before reading
 data into it.

 LOF(x) Returns the amount of free space in the input queue;
 that is /c:(size)-number of characters in the input queue
 LOF may be used to detect when the input queue is
 reaching storage capacity.

 EOF(x) True (-1), indicates that the input queue is empty.
 False (0) is returned if any characters are waiting to
 be read.

12.4  Possible Errors:
A "Communications buffer overflow" error occurs if a read is attempted after
the input queue is full (that is, LOC(x) returns 0).

A "Device I/O" error occurs if any of the following line conditions are
Detected on receive: overrun error (OE), framing error (FE), or break
interrupt (BI). The error is reset by subsequent inputs, but the character
causing the error is lost.

A "Device fault" error occurs if data set ready (DSR) is lost during I/O.

A "Parity error" occurs if the PE (parity enable) option was used in the OPEN
COM statement and incorrect parity was received.

12.5  The INPUT$ Function
The INPUT$ function is preferred over the INPUT and LINE INPUT statements for
reading COM files, because all ASCII characters may be significant in
communications. INPUT is least desirable because input stops when a comma or
an enter is seen. LINE INPUT terminates when an enter is seen.

INPUT$ allows all characters read to be assigned to a string.

INPUT$ returns x characters from the y file. The following statements then are
most efficient for reading a COM file:

10 WHILE NOT EOF(1)
20 A$=INPUT$(LOC(1),#1)
30 ...
40 ... Process data returned in A$ ...
50 ...
60 WEND



GW-BASIC User's Guide                                                                                                                                         - 62 -

This sequence of statements translates: As long as something is in the input
queue, return the number of characters in the queue and store them in A$. If
there are more than 255 characters, only 255 are returned at a time to prevent
string overflow. If this is the case, EOF(1) is false, and input continues
until the input queue is empty.

GET and PUT Statements for COM Files

Purpose:

To allow fixed-length I/O for COM.

Syntax:

GET filenumber, nbytes PUT filenumber, nbytes

Comments:

filenumber is an integer expression returning a valid file number.

nbytes is an integer expression returning the number of bytes to be
transferred into or out of the file buffer. nbytes cannot exceed the value set
by the /s: switch when GW-BASIC was invoked.

Because of the low performance associated with telephone line communications,
it is recommended that GET and PUT not be used in such applications.

Example:

The following TTY sample program is an exercise in communications I/O. It is
designed to enable your computer to be used as a conventional terminal.
Besides full-duplex communications with a host, the TTY program allows data to
be downloaded to a file. Conversely, a file may be uploaded (transmitted) to
another machine.

In addition to demonstrating the elements of asynchronous communications, this
program is useful for transferring GW-BASIC programs and data to and from a
computer.

Note

This program is set up to communicate with a DEC (R)  SYSTEM-20 especially
in the use of XON and XOFF. It may require modification to communicate
with other types of hardware.



GW-BASIC User's Guide                                                                                                                                         - 63 -

12.6  The TTY Sample Program
10 SCREEN 0,0:WIDTH 80
15 KEY OFF:CLS:CLOSE
20 DEFINT A-Z
25 LOCATE 25,1
30 PRINT STRING$(60," ")
40 FALSE=0:TRUE=NOT FALSE
50 MENU=5 'Value of MENU Key (^E)
60 XOFF$=CHR$(19):XON$=CHR$(17)
100 LOCATE 25,1:PRINT "Async TTY Program";
110 LOCATE 1,1:LINE INPUT "Speed?";"SPEED$
120 COMFIL$="COM1:,+SPEED$+",E,7"
130 OPEN COMFIL$ AS #1
140 OPEN "SCRN:"FOR OUTPUT AS #3
200 PAUSE=FALSE
210 A$=INKEY$:IF A$=""THEN 230
220 IF ASC(A$)=MENU THEN 300 ELSE PRINT #1,A$;
230 IF EOF(1) THEN 210
240 IF LOC(1)>128 THEN PAUSE=TRUE:PRINT #1,XOFF$;
250 A$=INPUT$(LOC(1),#1)
260 PRINT #3,A$;:IF LOC(1)>0 THEN 240
270 IF PAUSE THEN PAUSE=FALSE:PRINT #1,XON$;
280 GOTO 210
300 LOCATE 1,1:PRINT STRING$(30,32):LOCATE 1,1
310 LINE INPUT "FILE?";DSKFIL$
400 LOCATE 1,1:PRINT STRING$(30,32):LOCATE 1,1
410 LINE INPUT"(T)ransmit or (R)eceive?";TXRX$
420 IF TXRX$="T" THEN OPEN DSKFIL$ FOR INPUT AS #2:GOTO 1000
430 OPEN DSKFIL$ FOR OUTPUT AS #2
440 PRINT #1,CHR$(13);
500 IF EOF(1) THEN GOSUB 600
510 IF LOC(1)>128 THEN PAUSE=TRUE:PRINT #1,XOFF$;
520 A$=INPUT$(LOC(1),#1)
530 PRINT #2,A$;:IF LOC(1)>0 THEN 510
540 IF PAUSE THEN PAUSE=FALSE:PRINT #1,XON$;
550 GOTO 500
600 FOR I=1 TO 5000
610 IF NOT EOF(1) THEN I=9999
620 NEXT I
630 IF I>9999 THEN RETURN
640 CLOSE #2;CLS:LOCATE 25,10:PRINT "* Download complete *";
650 RETURN 200
1000 WHILE NOT EOF(2)
1010 A$=INPUT$(1,#2)
1020 PRINT #1,A$;
1030 WEND
1040 PRINT #1,CHR$(28);^Z to make close file.
1050 CLOSE #2:CLS:LOCATE 25,10:PRINT "** Upload complete **";
1060 GOTO 200
9999 CLOSE:KEY ON



GW-BASIC User's Guide                                                                                                                                         - 64 -

12.7 Notes on the TTY Sample Program
Note

 Asynchronous implies character I/O as opposed to line or block I/O. There-
 fore, all prints (either to the COM file or screen) are terminated with a
 semicolon (;). This retards the return line feed normally issued at the end
 of the PRINT statement.

 Line Number  Comments

 10 Sets the SCREEN to black and white alpha
 mode and sets the width to 80.

 15 Turns off the soft key display, clears the screen,
 and makes sure that all files are closed.

 20 Defines all numeric variables as integer, primarily
 for the benefit of the subroutine at 600-620. Any
 program looking for speed optimization should
 use integer counters in loops where possible.

 40 Defines boolean true and false.

 50 Defines the ASCII (ASC) value of the MENU key.

 60 Defines the ASCII XON and XOFF characters.

 100-130 Prints program ID and asks for baud rate
 (speed). Opens communications to file number 1,
 even parity, 7 data bits.

 200-280 This section performs full-duplex I/O between
 the video screen and the device connected to the
 RS-232 connector as follows:

 1. Read a character from the keyboard into A$.
 INKEY$ returns a null string if no character
 is waiting.

 2. If a keyboard character is available, waiting,
 then:

 If the character is the MENU key, the opera-
 tor is ready to down-load a file. Get filename.

 If the character (A$) is not the MENU key
 send it by writing to the communications file
 (PRINT #1...).

 3. If no character is waiting, check to see if any
 characters are being received.

 4. At 230, see if any characters are waiting in
 COM buffer. If not, go back and check the
 keyboard.



GW-BASIC User's Guide                                                                                                                                         - 65 -

 5. At 240, if more than 128 characters are wait-
 ing, set PAUSE flag to indicate that input is
 being suspended. Send XOFF to host, stop-
 ping further transmission.

 6. At 250-260, read and display contents of
 COM buffer on screen until empty. Continue
 to monitor size of COM buffer (in 240).
 Suspend transmission if reception falls
 behind.

 7. Resume host transmission by sending XON
 only if suspended by previous XOFF.

 8. Repeat process until the MENU key is pressed.

 300-320 Get disk filename to be down-loaded to. Open
 the file as number 2.

 400-420 Asks if file named is to be transmitted (up-
 loaded) or received (down-loaded).

 430 Receive routine. Sends a RETURN to the host to
 begin the down-load. This program assumes that
 the last command sent to the host was to begin
 such a transfer and was missing only the ter-
 minating return. If a DEC system is the host,
 such a command might be

    COPY TTY:=MANUAL.MEM (MENU Key)

 if the MENU key was struck instead of RETURN.

 500 When no more characters are being received,
 (LOC(x) returns 0), then performs a timeout rou-
 tine.

 510 If more than 128 characters are waiting, signal a
 pause and send XOFF to the host.

 520-530 Read all characters in COM queue (LOC(x)) and
 write them to diskette (PRINT #2...) until recep-
 tion is caught up to transmission.

 540-550 If a pause is issued, restart host by sending XON
 and clearing the pause flag. Continue the process
 until no characters are received for a predeter-
 mined time.

 600-650 Time-out subroutine. The FOR loop count was
 determined by experimentation. If no character is
 received from the host for 17-20 seconds,
 transmission is assumed complete. If any charac-
 ter is received during this time (line 610), then
 set n well above the FOR loop range to exit loop
 and return to caller. If host transmission is com-



GW-BASIC User's Guide                                                                                                                                         - 66 -

 plete, close the disk file and resume regular
 activities.

 1000-1060 Transmit routine. Until end of disk file, read one
 character into A$ with INPUT$ statement. Send
 character to COM device in 1020. Send a ^Z at
 end of file in 1040 in case receiving device needs
 one to close its file. Lines 1050 and 1060 close
 disk file, print completion message, and go back
 to conversation mode in line 200.

 9999 Presently not executed. As an exercise, add some
 lines to the routine 400-420 to exit the program
 via line 9999. This line closes the COM file left
 open and restores the function key display.

13  Appendix G - Hexadecimal Equivalents
Table G.1 lists decimal and binary equivalents to hexadecimal values.

Table G.1: Decimal and Binary Equivalents to Hexadecimal Values

Hexade-
cimal Equals Equals
Value  Decimal:    Binary:

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111



GW-BASIC User's Guide                                                                                                                                         - 67 -

Table G.2 lists decimal equivalents to hexadecimal values.

Table G.2: Decimal Equivalents to Hexadecimal Values

Hexade-             Hexade-
cimal    Equals     cimal       Equals
Value    Decimal:   Value:      Decimal:

0        0           80         128
1        1           .
2        2           .
3        3           .
4        4           90         144
5        5           .
6        6           .
7        7           .
8        8           A0         160
9        9           .
A        10          .
B        11          .
C        12          B0         176
D        13          .
E        14          .
F        15          .
10       16          C0         192
11       17          .
12       18          .
13       19          .
14       20          D0         208
15       21          .
16       22          .
17       23          .
18       24          E0         224
19       25          .
1A       26          .
1B       27          .
1C       28          F0        240
1D       29         100        256
1E       30         200        512
1F       31         300        768
20       32         400       1024
                    500       1280
.                   600       1536
.                   700       1792
30       48         800       2048
.                   900       2304
.                   A00       2560
.                   B00       2816
40       64         C00       3072
.                   D00       3328
.                   E00       3584
.                   F00       3840



GW-BASIC User's Guide                                                                                                                                         - 68 -

Hexade-             Hexade-
cimal    Equals     cimal     Equals
Value    Decimal:   Value:    Decimal:

50       80        1000       4096
.                  2000       8192
.                  3000      12288
.                  4000      16384
60       96        5000      20480
.                  6000      24576
.                  7000      28672
.                  8000      32768
70      112        9000      36864
.                  A000      40960
.                  B000      45056
.                  C000      49152
.                  D000      53248
.                  E000      57344
.                  F000      61440
.                  FFFF      65535



GW-BASIC User's Guide                                                                                                                                         - 69 -

14  Appendix H - Key Scan Codes
Keytop Legend Scancode

ESC 01
1/! 02
2/@ 03
3/# 04
4/$               05
5/% 06
6/^ 07
7/& 08
8/* 09
9/( 0A
0/) 0B
-/_ 0C
=/+ 0D
BACKSPACE 0E
TAB 0F
Q 10
W 11
E 12
R 13
T 14
Y 15
U 16
I 17
O 18
P 19
[/{ 1A
]/} 1B
ENTER 1C
CTRL 1D
A 1E
S 1F
D 20
F 21
G 22
H 23
J 24
K 25
L 26
;/: 27
'/" 28
'/~ 29
Left SHIFT 2A
/| 2B
Z 2C
X 2D
C 2E
V 2F
B 30
N 31



GW-BASIC User's Guide                                                                                                                                         - 70 -

Keytop Legend Scancode
M 32
,/< 33
./>               34
//? 35
Right SHIFT 36
*/PRTSC 37
ALT 38
SPACEBAR 39
CAPS LOCK 3A
F1 3B
F2 3C
F3 3D
F4 3E
F5 3F
F6 40
F7 41
F8 42
F9 43
F10 44
NUM LOCK 45
SCROLL LOCK 46
7/HOME 47
8/CURSOR UP 48
9/PGUP 49
- 4A
4/CURSOR LEFT 4B
5 4C
6/CURSOR RIGHT 4D
+ 4E
1/END             4F
2/CURSOR DOWN 50
3/PGDN 51
0/INS 52
./DEL 53

15  Appendix I - Characters Recognized by GW-BASIC
The GW-BASIC character set includes all characters that are legal in GW-BASIC
commands, statements, functions, and variables. The set comprises alphabetic,
numeric, and special characters.

The alphabetic characters in GW-BASIC are the uppercase and lowercase letters
of the alphabet.

The numeric characters in GW-BASIC are the digits 0 through 9.



GW-BASIC User's Guide                                                                                                                                         - 71 -

The following special characters and terminal keys are recognized by GW-BASIC:

 Character  Description

 Blank      .
 =          Equal sign or assignment symbol.
 +          Plus sign or string concatenation.
 -          Minus sign.
 *          Asterisk or multiplication symbol.
 /          Slash or division symbol.
 ^          Caret, exponentiation symbol, or CTRL key.
 (          Left parenthesis.
 )          Right parenthesis.
 %          Percent or integer declaration.
 #          Number sign or double-precision declaration.
 $          Dollar sign or string declaration.
 !          Exclamation point or single-precision declaration.
 [          Left bracket.
 ]          Right bracket.
 ,          Comma.
 ""         Double quotation marks or string delimiter.
 .          Period, dot, or decimal point.
 '          Single quotation mark, apostrophe, or remark indica-
            tor.
 ;          Semicolon or carriage return suppressor.
 :          Colon or line statement delimiter.
 &          Ampersand or descriptor for hexadecimal and octal
            number conversion.
 ?          Question mark.
 <          Less than symbol.
 >          Greater than symbol.
 \          Backslash or integer division symbol.
 @          "At" sign.
 _          Underscore.
 BACKSPACE  Deletes last character typed.
 ESC        Erases the current logical line from the screen.
 TAB        Moves print position to next tab stop. Tab stops are
            every eight columns.
 CURSOR     Moves cursor to next physical line.
 RETURN     Terminates input to a line and moves cursor to begin-
            ning of the next line, or executes statement in direct
            mode.



GW-BASIC User's Guide                                                                                                                                         - 72 -

16  Glossary
abend

 An acronym for abnormal end of task. An abend is the termination of com-
 puter processing on a job or task prior to its completion because of an error
 condition that cannot be resolved by programmed recovery procedures.

access

 The process of seeking, reading, or writing data on a storage unit.

access methods

 Techniques and programs used to move data between main memory and
 input/output devices.

accuracy

 The degree of freedom from error. Accuracy is often confused with precision,
 which refers to the degree of preciseness of a measurement.

acronym

 A word formed by the initial letters of words or by initial letters plus
 parts of several words. Acronyms are widely used in computer technology. For
 example, COBOL is an acronym for COmmon Business Oriented Language.

active partition

 A section of the computer's memory that houses the operating system being
 used.

address

 A name, label, or number identifying a register, location or unit where
infor-
 mation is stored.

algebraic language

 A language whose statements are structured to resemble the structure of
 algebraic expression. Fortran is a good example of an algebraic language.

algorithm

 A set of well-defined rules or procedures to be followed in order to obtain
 the solution of a problem in a finite number of steps. An algorithm can
 involve arithmetic, algebraic, logical and other types of procedures and
 instructions. An algorithm can be simple or complex. However, all algo-
 rithms must produce a solution within a finite number of steps. Algorithms
 are fundamental when using a computer to solve problems, because the
 computer must be supplied with a specific set of instructions that yields a
 solution in a reasonable length of time.



GW-BASIC User's Guide                                                                                                                                         - 73 -

alphabetic

 Data representation by alphabetical characters in contrast to numerical;
 the letters of the alphabet.

alphanumeric

 A contraction of the words alphabetic and numeric; a set of characters
 including letters, numerals, and special symbols.

application

 The system or problem to which a computer is applied. Reference is often
 made to an application as being either of the computational type, in which
 arithmetic computations predominate, or of the data processing type, in
 which data handling operations predominate.

application program

 A computer program designed to meet specific user needs.

argument

 1. A type of variable whose value is not a direct function of another
    variable. It can represent the location of a number in a mathemati-
    cal operation, or the number with which a function works to pro-
    duce its results.

 2. A known reference factor that is required to find a desired item
    (function) in a table. For example, in the square root function
    SQRT(X), X is the argument. The value of X determines the square
    root value returned by this function.

array

 1. An organized collection of data in which the argument is positioned
    before the function.

 2. A group of items or elements in which the position of each item or
    element is significant. A multiplication table is a good example of
    an array.

ASCII

 Acronym for American Standard Code for Information Interchange. ASCII is
 a standardized 8-bit code used by most computers for interfacing.

 ASCII was developed by the American National Standards Institute (ANSI). It
 uses 7 binary bits for information and the 8th bit for parity purposes.

assembler

 A computer program that produces a machine-language program which may
 then be directly executed by the computer.



GW-BASIC User's Guide                                                                                                                                         - 74 -

assembly language

 A symbolic language that is machine-oriented rather than problem-oriented.
 A program in an assembly language is converted by an assembler to a
 machine-language program. Symbols representing storage locations are con-
 verted to numerical storage locations; symbolic operation codes are con-
 verted to numeric operation codes.

asynchronous

 1. Not having a regular time or clocked relationship. See synchronous.

 2. A type of computer operation in which a new instruction is initiated
    when the former instruction is completed. Thus, there is no regular
    time schedule, or clock, with respect to instruction sequence. The
    current instruction must be complete before the next is begun,
    regardless of the length of time the current instruction takes.

asynchronous communication

 A way of transmitting data serially from one device to another, in which
 each transmitted character is preceded by a start bit and followed by a
 stop bit. This is also called start/stop transmission.

back-up

 1. A second copy of data on a diskette or other medium, ensuring
    recovery from loss or destruction of the original media.

 2. On-site or remote equipment available to complete an operation in
    the event of primary equipment failure.

BASIC

 Acronym for Beginner's All-purpose Symbolic Instruction Code. BASIC is a
 computer programming language developed at Dartmouth College as an
 instructional tool in teaching fundamental programming concepts. This
 language has since gained wide acceptance as a time-sharing language and
 is considered one of the easiest programming languages to learn.

batch processing

 A method of operating a computer so that a single program or set of related
 programs must be completed before the next type of program is begun.

baud

 A unit of measurement of data processing speed. The speed in bauds is the
 number of signal elements per second. Since a signal element can represent
 more than one bit, baud is not synonymous with bits-per-second. Typical
 baud rates are 110, 300, 1200, 2400, 4800, and 9600.

binary

 1. A characteristic or property involving a choice or condition in which
    there are two possibilities.



GW-BASIC User's Guide                                                                                                                                         - 75 -

 2. A numbering system which uses 2 as its base instead of 10 as in the
    decimal system. The binary system uses only two digits, 0 and 1, in
    its written form.

 3. A device whose design uses only two possible states or levels to per-
    form its functions. A computer executes programs in binary form.

binary digit

 A quantity which is expressed in the binary digits of 0 and 1.

bit

 A contraction of "binary digit". A bit can either be 0 or 1, and is the smal-
 lest unit of information recognizable by a computer.

block

 An amount of storage space or data, of arbitrary length, usually contiguous,
 and often composed of several similar records, all of which are handled as a
 unit.

boolean logic

 A field of mathematical analysis in which comparisons are made. A pro-
 grammed instruction can cause a comparison of two fields of data, and
 modify one of those fields or another field as a result of comparison. This
 system was formulated by British mathematician George Boole (1815-1864).
 Some boolean operators are OR, AND, NOT, XOR, EQV, and IMP.

boot

 A machine procedure that allows a system to begin operations at the
 desired level by means of its own initiation. The first few instructions are
 loaded into a computer from an input device. These instructions allow the
 rest of the system to be loaded. The word boot is abbreviated from the word
 bootstrap.

bps

 Bits per second.

buffer

 A temporary storage area from which data is transferred to or from various
 devices.

built-in clock

 A real-time clock that lets your programs use the time of day and date.
 Built into MS-DOS, it lets you set the timing of a program. It can be used to
 keep a personal calendar, and it automatically measures elapsed time.



GW-BASIC User's Guide                                                                                                                                         - 76 -

byte

 An element of data which is composed of eight data bits plus a parity
 bit, and represents either one alphabetic or special character, two
 decimal digits, or eight binary bits. Byte is also used to refer to a
 sequence of eight binary digits handled as a unit. It is usually
 encoded in the ASCII format.

calculation

 A series of numbers and mathematical signs that, when entered into a com-
 puter, is executed according to a series of instructions.

central processor (CPU)

 The heart of the computer system, where data is manipulated and calcula-
 tions are performed. The CPU contains a control unit to interpret and exe-
 cute the program and an arithmetic-logic unit to perform computations and
 logical processes. It also routes information, controls input and output, and
 temporarily stores data.

chaining

 The use of a pointer in a record to indicate the address of another record
 logically related to the first.

character

 Any single letter of the alphabet, numeral, punctuation mark, or other sym-
 bol that a computer can read, write, and store. Character is synonymous
 with the term byte.

COBOL

 Acronym for COmmon Business-Oriented Language, a computer language
 suitable for writing complicated business applications programs. It was
 developed by CODASYL, a committee representing the U. S. Department of
 Defense, certain computer manufacturers, and major users of data process-
 ing equipment. COBOL is designed to express data manipulations and pro-
 cessing problems in English narrative form, in a precise and standard
 manner.

code

 1. To write instructions for a computer system

 2. To classify data according to arbitrary tables

 3. To use a machine language

 4. To program

command

 A pulse, signal, word, or series of letters that tells a computer to start,
 stop, or continue an operation in an instruction. Command is often used



GW-BASIC User's Guide                                                                                                                                         - 77 -

 incorrectly as a synonym for instruction.

compatible

 A description of data, programs or equipment that can be used between
 different kinds of computers or equipment.

compiler

 A computer program that translates a program written in a problem-
 oriented language into a program of instructions similar to, or in, the
 language of the computer.

computer network

 A geographically dispersed configuration of computer equipment connected
 by communication lines and capable of load sharing, distributive processing,
 and automatic communication between the computers within the network.

concatenate

 To join together data sets, such as files, in a series to form one data set,
 such as one new file. The term concatenate literally means "to link
 together." A concatenated data set is a collection of logically connected
 data sets.

configuration

 In hardware, a group of interrelated devices that constitute a system. In
 software, the total of the software modules and their interrelationships.

constant

 A never-changing value or data item.

coprocessor

 A microprocessor device connected to a central microprocessor that per-
 forms specialized computations (such as floating-point arithmetic) much
 more efficiently than the CPU alone.

cursor

 A blinking line or box on a computer screen that indicates the next location
 for data entry.

data

 A general term used to signify all the basic information elements that can
 be produced or processed by a computer. See information.

data element

 The smallest named physical data unit.



GW-BASIC User's Guide                                                                                                                                         - 78 -

data file

 A collection of related data records organized in a specific manner. Data
 files contain computer records which contain information, as opposed to
 containing data handling information or a program.

debug

 The process of checking the logic of a computer program to isolate and
 remove mistakes from the program or other software.

default

 An action or value that the computer automatically assumes, unless a
 different instruction or value is given.

delimit

 To establish parameters; to set a minimum and a maximum.

delimiter

 A character that marks the beginning or end of a unit of data on a storage
 medium. Commas, semi-colons, periods, and spaces are used as delimiters to
 separate and organize items of data.

detail file

 A data file composed of records having similar characteristics, but contain-
 ing data which is relatively changeable by nature, such as employee weekly
 payroll data. Compare to master file.

device

 A piece of hardware that can perform a specific function. A printer is an
 example of a device.

 Cursor-End-of-File Mark (EOF)

diagnostic programs

 Special programs used to align equipment or isolate equipment malfunc-
 tions.

directory

 A table that gives the name, location, size, and the creation or last
 revision date for each file on the storage media.



GW-BASIC User's Guide                                                                                                                                         - 79 -

diskette

 A flat, flexible platter coated with magnetic material, enclosed in a protec-
 tive envelope, and used for storage of software and data.

Disk Operating System

 A collection of procedures and techniques that enable the computer to
 operate using a disk drive system for data entry and storage. Disk
 Operating System is usually abbreviated to DOS.

DOS

 The acronym for Disk Operating System. DOS rhymes with "boss."

double-density

 A type of diskette that has twice the storage capacity of standard single-
 density diskettes.

double-precision

 The use of two computer words to represent each number. This technique
 allows the use of twice as many digits as are normally available and is used
 when extra precision is needed in calculations.

double-sided

 A term that refers to a diskette that can contain data on both surfaces of
 the diskette.

drive

 A device that holds and manipulates magnetic media so that the CPU can
 read data from or write data to them.

end-of-file mark (EOF)

 A symbol or machine equivalent that indicates that the last record of a file
 has been read.

erase

 To remove or replace magnetized spots from a storage medium.

error message

 An audible or visual indication of hardware or software malfunction or of
 an illegal data-entry attempt.

execute

 To carry out an instruction or perform a routine.



GW-BASIC User's Guide                                                                                                                                         - 80 -

exponent
 A symbol written above a factor and on the right, telling how many times
 the factor is repeated. In the example of A 2 , A is the factor and 2 is the
 exponent. A 2  means A times A (A x A).

extension

 A one-to-three-character set that follows a filename. The extension further
 defines or clarifies the filename. It is separated from the filename by a
 period(.).

field

 An area of a record that is allocated for a specific category of data.

file

 A collection of related data or programs that is treated as a unit by the
 computer.

file protection

 The devices or procedures that prevent unintentional erasure of data on a
 storage device, such as a diskette.

file structure

 A conceptual representation of how data values, records, and files are
 related to each other. The structure usually implies how the data is stored
 and how the data must be processed.

filename

 The unique name, usually assigned by a user, which is used to identify one
 file for all subsequent operations that use that file.

fixed disk

 A hard disk enclosed in a permanently-sealed housing that protects it from
 environmental interference. Used for storage of data.

floating-point arithmetic

 A method of calculation in which the computer or program automatically
 records, and accounts for, the location of the radix point. The programmer
 need not consider the radix location.

floating-point routine

 A set of program instructions that permits a floating-point mathematics
 operation in a computer which lacks the feature of automatically account-
 ing for the radix point.

format

 A predetermined arrangement of data that structures the storage of infor-



GW-BASIC User's Guide                                                                                                                                         - 81 -

 mation on an external storage device.

function

 A computer action, as defined by a specific instruction. Some GW-BASIC func-
 tions are COS, EOF, INSTR, LEFT$, and TAN.

function keys

 Specific keys on the keyboard that, when pressed, instruct the computer to
 perform a particular operation. The function of the keys is determined by
 the applications program being used.

GIGO

 An informal term that indicates sloppy data processing; an acronym for
 Garbage In Garbage Out. The term GIGO is normally used to make the
 point that if the input data is bad (garbage in) then the output data will
 also be bad (garbage out).

global search

 Used in reference to a variable (character or command), a global search
 causes the computer to locate all occurrences of that variable.

graphics

 A hardware/software capability to display objects in pictures, rather than
 words, usually on a graphic (CRT) display terminal with line-drawing capa-
 bility and permitting interaction, such as the use of a light pen.

hard copy

 A printed copy of computer output in a readable form, such as reports,
 checks, or plotted graphs.

hardware

The physical equipment that comprises a system.

hexadecimal

 A number system with a base, or radix, of 16. The symbols used in this sys-
 tem are the decimal digits 0 through 9 and six additional digits which are
 generally represented as A, B, C, D, E, and F.

hidden files

 Files that cannot be seen during normal directory searches.

hierarchical directories

 See tree-structured directories.

housekeeping functions

 Routine operations that must be performed before the actual processing



GW-BASIC User's Guide                                                                                                                                         - 82 -

 begins or after it is complete.

information

 Facts and knowledge derived from data. The computer operates on and gen-
 erates data. The meaning derived from the data is information. That is,
 information results from data; the two words are not synonymous, although
 they are often used interchangeably.

interpreter

 A program that reads, translates and executes a user's program, such as one
 written in the BASIC language, one line at a time. A compiler, on the other
 hand, reads and translates the entire user's program before executing it.

input

 1. The process or device concerning the entry of data into a computer.

 2. Actual data being entered into a computer.

input/output

 A general term for devices that communicate with a computer.
 Input/output is usually abbreviated as I/O.

instruction

 A program step that tells the computer what to do next. Instruction is often
 used incorrectly as a synonym for command.

integer

 A complete entity, having no fractional part. The whole or natural number.
 For example, 65 is an integer; 65.1 is not.

integrated circuit

 A complete electronic circuit contained in a small semiconductor com-
 ponent.

interface

 An information interchange path that allows parts of a computer, comput-
 ers, and external equipment (such as printers, monitors, or modems), or two
 or more computers to communicate or interact.

I/O

 The acronym for input/output.

job

 A collection of tasks viewed by the computer as a unit.



GW-BASIC User's Guide                                                                                                                                         - 83 -

K

 The symbol signifying the quantity 2 10, which is equal to 1024. K is some-
 times confused with the symbol k, (kilo) which is equal to 1000.

logarithm

 A logarithm of a given number is the value of the exponent indicating
 the power required to raise a specified constant, known as the base, to

 produce that given number. That is, if B is the base, N is the given
 number and L is the logarithm, then BL = N. Since 10 3 = 1000, the
 logarithm to the base 10 of 1000 is 3.

loop

 A series of computer instructions that are executed repeatedly until a
 desired result is obtained or a predetermined condition is met. The ability
 to loop and reuse instructions eliminates countless repetitious instructions
 and is one of the most important attributes of stored programs.

M

 The symbol signifying the quantity 1,000,000 (10 6). When used to denote
 storage, it more precisely refers to 1,048,576 (2 20).

mantissa

 The fractional or decimal part of a logarithm of a number. For example,
 the logarithm of 163 is 2.212. The mantissa is 0.212, and the characteristic
 is 2.0.

 In floating-point numbers, the mantissa is the number part. For example,
 the number 24 can be written as 24,2 where 24 is the mantissa and 2 is the
 exponent. The floating-point number is read as .24 X 10 2, or 2 4.

master file

 A data file composed of records having similar characteristics that rarely
 change. A good example of a master file would be an employee name and
 address file that also contains social security numbers and hiring dates.

media

 The plural of medium.

medium

 The physical material on which data is recorded and stored. Magnetic tape,
 punched cards, and diskettes are examples of media.

memory

 The high-speed work area in the computer where data can be held, copied,
 and retrieved.



GW-BASIC User's Guide                                                                                                                                         - 84 -

menu

 A list of choices from which an operator can select a task or operation to be
 performed by the computer.

microprocessor

 A semiconductor central processing unit (CPU) in a computer.

modem

 Acronym for modulator demodulator. A modem converts data from a com-
 puter to analog signals that can be transmitted through telephone lines, or
 converts the signals from telephone lines into a form the computer can use.

MS-DOS

 Acronym for Microsoft Disk Operating System.

nested programs or subroutines

 A program or subroutine that is incorporated into a larger routine to per-
 mit ready execution or access of each level of the routine. For example,
 nesting loops involves incorporating one loop of instructions into another
 loop.

null

 Empty or having no members. This is in contrast to a blank or zero, which
 indicates the presence of no information. For example, in the number 540,
 zero contains needed information.

numeric

 A reference to numerals as opposed to letters or other symbols.

octal number system

 A representation of values or quantities with octal numbers. The octal
 number system uses eight digits: 0, 1, 2, 3, 4, 5, 6, and 7, with each
 position in an octal numeral representing a power of 8. The octal system
 is used in computing as a simple means of expressing binary quantities.

operand

 A quantity or data item involved in an operation. An operand is usually
 designated by the address portion of an instruction, but it may also be a
 result, a parameter, or an indication of the name or location of the next
 instruction to be executed.

operating system

 An organized group of computer instructions that manage the overall opera-
 tion of the computer.



GW-BASIC User's Guide                                                                                                                                         - 85 -

operator

 A symbol indicating an operation and itself the subject of the operation. It
 indicates the process that is being performed. For example, + is addition, -
 is subtraction, X is multiplication, and / is division.

option

 An add-on device that expands a system's capabilities.

output

 Computer results, or data that has been processed.

parallel output

 The method by which all bits of a binary word are transmitted simultane-
 ously.

parameter

 A variable that is given a value for a specific program or run. A definable
 characteristic of an item, device, or system.

parity

 An extra-bit of code that is used to detect data errors in memory by mak-
 ing the sum of the active bit in a data word either an odd or an even
 number.

partition

 An area on a fixed disk set aside for a specific purpose, such as a location
 for an operating system.

peripheral

 An external input/output, or storage device.

pixel

 The acronym for picture element. A pixel is a single dot on a monitor that
 can be addressed by a single bit.

port

 The entry channel to and from the central computer for connection of a
 communications line or other peripheral device.

power

 The functional area of a system that transforms an external power source
 into internal DC supply voltage.

program

 A series of instructions or statements in a form acceptable to a computer,



GW-BASIC User's Guide                                                                                                                                         - 86 -

 designed to cause the computer to execute a series of operations. Computer
 programs include software such as operating systems, assemblers, compilers,
 interpreters, data management systems, utility programs, sort-merge pro-
 grams, and maintenance/diagnostic programs, as well as application pro-
 grams such as payroll, inventory control, and engineering analysis programs.

prompt

 A character or series of characters that appear on the screen to request
 input from the user.

RAM

 Acronym for random-access memory.

radian

 The natural unit of measure of the angle between two intersecting half-lines
 on the angles from one half-line to another intersecting half-line. It is the
 angle subtended by an arc of a circle equal in length to the radius of the
 circle. As the circumference of a circle is equal to 2 pi times its radius,
 the number of radians in an angle of 360 o  or in a complete turn is 2 pi.

radix

 A number that is arbitrarily made the fundamental number of a system of
 numbers; a base. Thus, 10 is the radix, or base, of the common system of
 logarithms, and also of the decimal system of enumeration.

random-access memory

 The system's high-speed work area that provides access to memory
 storage locations by using a system of vertical and horizontal coordi-
 nates. The computer can write information into or read information
 from the random access memory. Random-access memory is often
 called RAM.

raster unit

 On a graphic display screen, a raster unit is the horizontal or vertical dis-
 tance between two adjacent addressable points on the screen.

read-only memory

 A type of memory that contains permanent data or instructions. The com-
 puter can read from but not write to the read-only memory. Read-only
 memory is often called ROM.

real number

 An ordinary number, either rational or irrational; a number in which there
 is no imaginary part, a number generated from the single unit, 1; any point
 in a continuum of natural numbers filled in with all rationals and all irra-
 tionals and extended indefinitely, both positive and negative.



GW-BASIC User's Guide                                                                                                                                         - 87 -

real time

 1. The actual time required to solve a problem.

 2. The process of solving a problem during the actual time that a
 related physical process takes place so that results can be used to
 guide the physical process.

remote

 A term used to refer to devices that are located at sites away from the cen-
 tral computer.

reverse video

 A display of characters on a background, opposite of the usual display.

ROM

 Acronym for read-only memory.

RS-232

 A standard communications interface between a modem and terminal dev-
 ices that complies with EIA Standard RS-232.

serial output

 Sending only one bit at a time to and from interconnected devices.

single-density

 The standard recording density of a diskette. Single-density diskettes can
 store approximately 3400 bits per inch (bpi).

single-precision value

 The number of words or storage positions used to denote a number in a
 computer. Single-precision arithmetic is the use of one word per number,
 double-precision arithmetic is the use of two words per number, and so on.
 For variable word-length computers, precision is the number of digits used
 to denote a number. The higher the precision, the greater the number of
 decimal places that can be carried.

single-sided

 A term used to describe a diskette that contains data on one side only.

software

 A string of instructions that, when executed, direct the computer to perform
 certain functions.

stack architecture

 An architecture wherein any portion of the external memory can be used as
 a last-in, first-out stack to store/retrieve the contents of the accumulator,



GW-BASIC User's Guide                                                                                                                                         - 88 -

 the flags, or any of the data registers. Many units contain a 16-bit stack
 pointer to control the addressing of this external stack. One of the major
 advantages of the stack is that multiple-level interrupts can be handled
 easily, since complete system status can be saved when an interrupt occurs
 and then be restored after the interrupt. Another major advantage is that
 almost unlimited subroutine nesting is possible.

statement

 A high-level language instruction to the computer to perform some sequence
 of operations.

synchronous

 A type of computer operation in which the execution of each instruction or
 each event is controlled by a clock signal: evenly spaced pulses that enable
 the logic gates for the execution of each logic step. A synchronous operation
 can cause time delays by causing waiting for clock signals although all
 other signals at a particular logic gate were available. See asynchronous.

switch

 An instruction, added to a command, that designates a course of action,
 other than default, for the command process to follow.

syntax

 Rules of statement structure in a programming language.

system

 A collection of hardware, software, and firmware that is interconnected to
 operate as a unit.

task

 A machine run; a program in execution.

toggle

 Alternation of function between two stable states.

track

 A specific area on a moving-storage medium, such as a diskette, disk, or
 tape cartridge, that can be accessed by the drive heads.

tree-structured directory

 A file-organization structure, consisting of directories and subdirectories
 that, when diagrammed, resembles a tree.

truncation

 To end a computation according to a specified rule; for example, to drop
 numbers at the end of a line instead of rounding them off, or to drop char-
 acters at the end of a line when a file is copied.



GW-BASIC User's Guide                                                                                                                                         - 89 -

upgrade

 To expand a system by installing options or using revised software.

utility function

 Computer programs, dedicated to one particular task, that are helpful in
 using the computer. For example, FDISK, for setting up partitions on the
 fixed disk.

variable

 A quantity that can assume any of a set of values as a result of processing
 data.

volume label

 The name for the contents of a diskette or a partition on a fixed disk.

word

 The set of bits comprising the largest unit that the computer can handle in
 a single operation.

write-protect notch

 A cut-out opening in the sealed envelope of a diskette that, when covered,
 prevents writing or adding text to the diskette, but allows information to be
 read from the diskette.



GW-BASIC User's Reference - 1 -

GW-BASIC User's Reference

Table of Contents – Instruction Overview
Keyword Type Page
ABS                             Function 5
ASC Function 6
ATN Function 7
AUTO Command 8
BEEP Statement 9
BLOAD Command 9
BSAVE Command 11
CALL Statement 12
CDBL Function 15
CHAIN Statement 16
CHDIR Command 17
CHR$ Function 18
CINT Function 19
CIRCLE Statement 20
CLEAR Command 22
CLOSE Statement 24
CLS Statement 25
COLOR Statement 26
COM(n) Statement 29
COMMON Statement 30
CONT Command 31
COS Function 32
CSNG Function 33
CSRLIN Variable 34
CVD Function 35
CVI Function 35
CVS Function 35
DATE Statement 36
DATE$ Variable 38
DEF FN Statement 39
DEFDBL Statement 41
DEFINT Statement 41
DEFSNG Statement 41
DEFSTR Statement 41
DEF SEG Statement 42
DEF USR Statement 43
DELETE Command 44
DIM Statement 45
DRAW Statement 46
EDIT Command 50
END Statement 51
ENVIRON Statement 52
ENVIRON$ Function 54
EOF Function 56

Keyword Type Page
ERASE Statement 57
ERDEV Variable 58
ERDEV$ Variable 58
ERL Variable 59
ERR Variable 59
ERROR Statement 60
EXP Function 62
EXTERR Function 63
FIELD Statement 64
FILES Command 65
FIX Function 66
FOR...NEXT Statement 67
FRE Function 69
GET (Files) Statement 70
GET (Graphics) Statement 71
GOSUB...RETURN Statement 73
GOTO Statement 74
HEX$ Function 75
IF..THEN..ELSE Statement 76
INKEY$ Variable 78
INP Function 79
INPUT Statement 80
INPUT# Statement 82
INPUT$ Function 83
INSTR Function 84
INT Function 85
IOCTL Statement 86
IOCTL$ Function 87
KEY Statement 88
KEY(n) Statement 91
KILL Command 92
LEFT$ Function 93
LEN Function 94
LET Statement 95
LINE Statement 96
LINE INPUT Statement 99
LINE INPUT# Statement 100
LIST Command 101
LLIST Command 102
LOAD Command 103
LOC Function 104
LOCATE Statement 105
LOCK Statement 107
LOF Function 109



GW-BASIC User's Reference - 2 -

Keyword Type Page
LOG Function 109
LPOS Function 110
LPRINT Statement 111
LPRINT USING Statement 111
LSET Statement 112
MERGE Command 113
MID$ Function 114
MID$ Statement 115
MKDIR Command 116
MKD$ Function 117
MKI$ Function 117
MKS$ Function 117
NAME Command 118
NEW Command 119
OCT$ Function 120
ON COM(n) Statement 121
ON KEY(n) Statement 121
ON PEN(n) Statement 121
ON PLAY(n) Statement 121
ON STRIG(n) Statement 121
ON TIMER(n) Statement 121
ON ERROR GOTO Statement 126
ON ... GOSUB Statement 127
ON ... GOTO Statement 127
OPEN Statement 128
OPEN "COM(n) Statement 133
OPTION BASE Statement 135
OUT Statement 136
PAINT Statement 137
PALETTE Statement 140
PALETTE USING Statement 140
PCOPY Command 144
PEEK Function 145
PEN Statement 146
PEN Function 146
PLAY Statement 148
PLAY(n) Function 150
PMAP (Graphics) Function 151
POINT Function 152
POKE Statement 154
POS Function 155
PRESET Statement 156
PSET Statement 156
PRINT Statement 158
PRINT USING Statement 160
PRINT# Statement 164
PRINT# USING Statement 164
PUT (Files) Statement 167
PUT (Graphics) Statement 168
RANDOMIZE Statement 170
READ Statement 172

Keyword Type Page
REM Statement 174
RENUM Command 175
RESET Command 176
RESTORE Statement 176
RESUME Statement 177
RETURN Statement 178
RIGHT$ Function 179
RMDIR Command 180
RND Function 181
RSET Statement 112
RUN Command 182
SAVE Command 183
SCREEN Function 184
SCREEN Statement 185
SGN Function 192
SHELL Statement 193
SIN Function 194
SOUND Statement 195
SPACE$ Function 198
SPC Function 199
SQR Function 200
STICK Function 201
STOP Statement 202
STR$ Function 203
STRIG Statement 204
STRIG Function 204
STRIG(n) Statement 205
STRING$ Function 206
SWAP Statement 207
SYSTEM Command 208
TAB Function 209
TAN Function 210
TIME$ Statement 211
TIME$ Variable 211
TIMER Function 212
TRON Command 213
TROFF Command 213
UNLOCK Statement 214
USR Function 216
VAL Function 217
VARPTR Function 218
VARPTR$ Function 221
VIEW Statement 222
VIEW PRINT Statement 223
WAIT Statement 224
WHILE...WEND Statement 225
WIDTH Statement 226
WINDOW Statement 228
WRITE Statement 231
WRITE# Statement 232



GW-BASIC User's Reference - 3 -

Tables                                                                         Page
Table 1 - SCREEN Color and Attribute Ranges 142
Table 2 - SCREEN Mode Specifications 190
Table 3 - Default Attributes and Colors for Most Screen Modes 191
Table 4 - Default Foreground Colors 191
Table 5 - Relationships of Notes and Frequencies 196
Table 6 - Tempos Requested by Clock Ticks 197



GW-BASIC User's Reference - 4 -

Microsoft (R)
GW-BASIC Interpreter
User's Reference

Microsoft Corporation

Information in this document is subject to change without notice and does not represent a
commitment on the part of Microsoft Corporation. The software described in this document is
furnished under a license agreement or nondisclosure agreement. The software may be used or
copied only in accordance with the terms of the agreement. It is against the law to copy this
software on magnetic tape, disk, or any other medium for any purpose other than the
purchaser's personal use.

(c) Copyright Microsoft Corporation, 1986, 1987. All rights reserved.

Portions copyright COMPAQ Computer Corporation, 1985

Simultaneously published in the United States and Canada.

Microsoft(R), MS-DOS(R), GW-BASIC(R), and the Microsoft logo are registered
trademarks of Microsoft Corporation.

EGA(R) and IBM(R) are registered trademarks of International Business Machines
Corporation.



GW-BASIC User's Reference - 5 -

Introduction
This manual is an alphabetical reference to GW-BASIC instructions: state-
ments, functions, commands, and variables.

The name and type of each instruction is listed at the top of the page, and is
followed by:

Purpose: The purpose of the instruction

Syntax: The complete notation of the instruction

Comments: Pertinent information about the instruction, and what
happens when it is encountered by GW-BASIC

Examples: An illustration of the instruction as it might appear in
a program

Notes: Any special information about the instruction

ABS Function
Purpose:

To return the absolute value of the expression n.

Syntax:

ABS(n)

Comments:

n must be a numeric expression.

Examples:

PRINT ABS(7*(-5))
35
Ok

Prints 35 as the result of the action.



GW-BASIC User's Reference - 6 -

ASC Function
Purpose:

To return a numeric value that is the ASCII code for the first character of the string x$.

Syntax:

ASC(x$)

Comments:

If x$ is null, an "Illegal Function Call" error is returned.

If x$ begins with an uppercase letter, the value returned will be within the range of 65 to 90.

If x$ begins with a lowercase letter, the range is 97 to 122.

Numbers 0 to 9 return 48 to 57, sequentially.

See the CHR$ function for ASCII-to-string conversion.

See Appendix C in the GW-BASIC User's Guide for ASCII codes.

Examples:

10 X$="TEN"
20 PRINT ASC(X$)
RUN
 84
Ok

84 is the ASCII code for the letter T.



GW-BASIC User's Reference - 7 -

ATN Function
Purpose:

To return the arctangent of x, when x is expressed in radians.

Syntax:

ATN(x)

Comments:

The result is within the range of -p /2 to p /2.

The expression x may be any numeric type. The evaluation of ATN is performed in single
precision unless the /d switch is used when GW-BASIC is executed.

To convert from degrees to radians, multiply by p  /180.

Examples:

10 INPUT X
20 PRINT ATN(X)
RUN
? 3
1.249046
Ok

Prints the arctangent of 3 radians (1.249046).



GW-BASIC User's Reference - 8 -

AUTO Command
Purpose:

To generate and increment line numbers automatically each time you press the RETURN key.

Syntax:

AUTO [line number][,[increment]]
AUTO .[,[increment]]

Comments:

AUTO is useful for program entry because it makes typing line numbers unnecessary.

AUTO begins numbering at line number and increments each subsequent line number by
increment . The default for both values is 10.

The period (.) can be used as a substitute for line number to indicate the current line.

If line number is followed by a comma, and increment is not specified, the last increment
specified in an AUTO command is assumed.

If AUTO generates a line number that is already being used, an asterisk appears after the
number to warn that any input will replace the existing line. However, pressing RETURN
immediately after the asterisk saves the line and generates the next line number.

AUTO is terminated by entering CTRL-BREAK or CTRL-C. GW-BASIC will then return to
command level.

Note

The line in which CTRL-BREAK or CTRL-C is entered is not saved. To be sure that you save all
desired text, use CTRL-BREAK and CTRL-C only on lines by themselves.

Examples:

AUTO 100,50

Generates line numbers 100, 150, 200, and so on.

AUTO

Generates line numbers 10, 20, 30, 40, and so on.



GW-BASIC User's Reference - 9 -

BEEP Statement
Purpose:

To sound the speaker at 800 Hz (800 cycles per second) for one-quarter of a
second.

Syntax:

BEEP

Comments:

BEEP, CTRL-G, and PRINT CHR$(7) have the same effect.

Examples:

2340 IF X>20 THEN BEEP

If X is out of range, the computer beeps.

BLOAD Command
Purpose:

To load an image file anywhere in user memory.

Syntax:

BLOAD filename[,offset]

Comments:

filename is a valid string expression containing the device and filename.

offset is a valid numeric expression within the range of 0 to 65535. This is the offset into the
segment, declared by the last DEF SEG statement, where loading  is to start.

If offset is omitted, the offset specified at BSAVE is assumed; that is, the file is loaded into the
same location it was saved from.



GW-BASIC User's Reference - 10 -

Note

BLOAD does not perform an address range check. It is possible to BLOAD anywhere in memory.
You must not BLOAD over the GW-BASIC stack space, a GW-BASIC program, or the GW-
BASIC variable area.

While BLOAD and BSAVE are useful for loading and saving machine language programs, they
are not restricted to them. The DEF SEG statement lets you specify any segment as the source
or target for BLOAD and BSAVE. For example, this allows the video screen buffer to be read from
or written to the diskette. BLOAD and BSAVE are useful in saving and displaying graphic
images.

Examples:

10 DEF SEG=&HB800
20 BLOAD"PICTURE",0

The DEF SEG statement in line 10 points the segment at the screen buffer.

The DEF SEG statement in line 10 and the offset of 0 in line 20 guarantee that the correct
address is used.

The BLOAD command in line 20 loads the file named picture into the screen buffer.

Note

The BSAVE example in the next section illustrates how the file named
picture is saved.



GW-BASIC User's Reference - 11 -

BSAVE Command
Purpose:

To save portions of user memory on the specified device.

Syntax:

BSAVE filename,offset,length

Comments:

filename is a valid string expression containing the filename.

offset is a valid numeric expression within the range of 0 to 65535. This is the offset into the
segment, declared by the last DEF SEG, where saving is to start.

length is a valid numeric expression within the range of 0 to 65535, specifying the length of the
memory image to be saved.

If filename is less than one character, a "Bad File Number" error is issued and the load is
aborted.

Execute a DEF SEG statement before the BSAVE. The last known DEF SEG address is always
used for the save.

The DEF SEG statement must be used to set up the segment address to the start of the screen
buffer. An offset of 0 and a length of 16384 specify that the entire 16K screen buffer is to be
saved.

Examples:

10 DEF SEG=&HB800
20 BSAVE"PICTURE",0,16384

The DEF SEG statement in line 10 points the segment at the screen buffer.

The BSAVE command in line 20 saves the screen buffer in the file named picture.



GW-BASIC User's Reference - 12 -

CALL Statement
Purpose:

To call an assembly (or machine) language subroutine.

Syntax:

CALL numvar[(variables)]

Comments:

numvar is the starting point in memory of the subroutine being called as an offset into the
current segment.

variables are the variables or constants, separated by commas and enclosed in parentheses,
that are to be passed to the routine.

The CALL statement is recommended for interfacing assembly language programs with GW-
BASIC. Although the USR function may also be used, CALL is compatible with more languages,
produces a more readable source code, and can pass multiple arguments.

Invocation of the CALL statement causes the following to occur:

o Each parameter location in the variable is pushed onto the stack. The parameter location
is a 2-byte offset into GW-BASIC's data segment.

o The return address code segment (CS) and the offset are pushed onto the stack.

o Control is transferred to the user routine by the segment address given in the last DEF
SEG statement and the offset given in the variable name.

o The user routine now has control. Parameters may be referenced by moving the stack
pointer (SP) to the base pointer (BP) and adding a positive offset to BP.

o The called routine may destroy the contents of any registers.

o The called program must know how many parameters were passed. Parameters are
referenced by adding a positive offset to BP, assuming the called routine moved the
current stack pointer into BP (that is MOV BP,SP).

o The called program must know the variable type for numeric parameters passed.

o The called routine must do a RET n, where n is the number of parameters in the variable
times 2. This is necessary in order to adjust the stack to the point at the start of the
calling sequence.

o Values are returned to GW-BASIC by including in the argument list the name of the
variable that is to receive the result.



GW-BASIC User's Reference - 13 -

o If the argument is a string, the parameter offset points to three bytes called the string
descriptor. Byte 0 of the string descriptor contains the length of the string (0 to 255).
Bytes 1 and 2, respectively, are the lower- and upper-eight bits of the string starting
address in the string space.

o If the argument is a string literal in the program, the string descriptor points to program
text. Be careful not to alter or destroy a program this way. To avoid unpredictable results,
add +"" to the string literal in the program, as in the following:

20 A$="BASIC"+""

This forces the string literal to be copied into the string space. Now the string may be
modified without affecting the program.

Note

Strings may be altered by user routines, but their length must not be changed. GW-BASIC
cannot correctly erase strings if their lengths are modified by external routines.

For more information on the CALL statement and USR function, see Appendix D in the GW-
BASIC User's Guide.

Example 1:

100 DEF SEG=&H2000
110 ARK=0
120 CALL ARK(A,B$,C)

Line 100 sets the segment to hex 2000. ARK is set to zero so that the call to ARK executes the
subroutine at location 2000:0.



GW-BASIC User's Reference - 14 -

Example 2:

The following sequence of 8086 Assembly Language demonstrates access of the parameters
passed and stored in variable C:

PUSH BP
MOV BP,SP ; Gets current stack position in BP.
MOV BX,8[BP] ; Gets address of B$ descriptor.
MOV CL,[BX] ; Gets length of B$ in CL.
MOV DX,1[BX] ; Gets address of B$ text in DX.
MOV SI,10[BP] ; Gets address of A in SI.
MOV DI,6[BP] ; Gets pointer to C in DI.
MOVSW ; Stores variable A in C.
RET 6 ; Restores stack and returns.

MOVSW copies only two bytes. This is sufficient if variables A and C are integer. Four bytes must
be copied if they are single precision; eight bytes, if they are double precision.

Example 3:

100 DEF SEG=&H2000
110 ACC=&H7FA
120 CALL ACC(A,B$,C)

Line 100 sets the segment to hex 2000. The value of variable ACC is added into the address as
the low word after the DEF SEG value is shifted four bits to the left (this is a function of the
microprocessor, not of GW-BASIC). Here, ACC is set to &H7FA, so that the call to ACC
executes the subroutine at the location hex 2000:7FA (absolute address hex 207FA).



GW-BASIC User's Reference - 15 -

CDBL Function
Purpose:

To convert x to a double-precision number.

Syntax:

CDBL(x)

Comments:

x must be a numeric expression.

Example:

10 A=454.67
20 PRINT A;CDBL(A)
RUN
454.67 454.6700134277344
Ok

Prints a double-precision version of the single-precision value stored in the variable named A.

The last 11 numbers in the double-precision number have no meaning in this example, since A
was previously defined to only two-decimal place accuracy.

Note

See the CINT and CSNG functions for converting numbers to integer and single precision,
respectively.



GW-BASIC User's Reference - 16 -

CHAIN Statement
Purpose:

To transfer control to the specified program and pass (chain) variables to it from the current
program.

Syntax:

CHAIN[MERGE] filename[,[line][,[ALL][,DELETE range]]]

Comments:

MERGE overlays the current program with the called program.

Note

The called program must be an ASCII file (previously saved with the a option) if it is to be
merged (see the MERGE command).

filename is the name of the program that is called to be chained to. The .BAS extension is
assumed unless another is specified.

line is a line number or an expression that corresponds to a line number in the called program.
It is the starting point for execution of the called program. For example the following begins
execution of PROG1 at line 1000:

10 CHAIN "PROG1",1000

If line is omitted, execution begins at the first line.

line is not affected by a RENUM command. However, the line numbers in the specified range
are affected by a RENUM command.

ALL specifies that every variable in the current program is chained to the called program. For
example:

20 CHAIN "PROG1",1000,ALL

If the ALL option is omitted, the current program must contain a COMMON statement to list the
variables that are passed.

CHAIN executes a RESTORE before it runs the program that it is to be chained to. The READ
statement then gets the first item in the DATA statement. Reading will not resume where it left off
in the program that is being chained.

After an overlay is executed and used for a specific purpose, it is usually desirable to delete it so
that a new overlay may be brought in. To do this, use the DELETE command.



GW-BASIC User's Reference - 17 -

The CHAIN statement with the MERGE command leaves the files open and preserves the current
option base setting.

If the MERGE command is omitted, the OPTION BASE setting is preserved, and CHAIN preserves
no variable types or user-defined functions for use by the chained program. That is, any
DEFINT, DEFSNG, DEFDBL, DEFSTR, or DEF FN statement containing shared variables must be
restated in the chained program.

When using the merge command, place user-defined functions before any CHAIN MERGE
statements in the program. Otherwise, they will be undefined after the merge is complete.

CHDIR Command
Purpose:

To change from one working directory to another.

Syntax:

CHDIR pathname

Comments:

pathname is a string expression of up to 63 characters.

To make sales the working directory on Drive A: and inventory the working directory on Drive B:
(assume A: is the default drive), type the following commands:

CHDIR "SALES"
CHDIR "B:INVENTORY"



GW-BASIC User's Reference - 18 -

CHR$ Function
Purpose:

To convert an ASCII code to its equivalent character.

Syntax:

CHR$(n)

Comments:

n is a value from 0 to 255.

CHR$ is commonly used to send a special character to the terminal or printer. For example, you
could send CHR$(7) to sound a beep through the speaker as a preface to an error message, or
you could send a form feed, CHR$(12), to the printer.

See the ASC function for ASCII-to-numeric conversion.

ASCII Codes are listed in Appendix C of the GW-BASIC User's Guide.

Examples:

PRINT CHR$(66);
B
Ok

This prints the ASCII character code 66, which is the uppercase letter B.

PRINT CHR$(13);

This command prints a carriage return.



GW-BASIC User's Reference - 19 -

CINT Function
Purpose:

To round numbers with fractional portions to the next whole number or integer.

Syntax:

CINT(x)

Comments:

If x is not within the range of -32768 to 32767, an "Overflow" error occurs.

See the FIX and INT functions, both of which return integers.

Examples:

PRINT CINT(45.67)
46
Ok

45.67 is rounded up to 46.

Note

See the CDBL and CSNG functions for converting numbers to the double-precision and single-
precision data types, respectively.



GW-BASIC User's Reference - 20 -

CIRCLE Statement
Purpose:

To draw a circle, ellipse, and angles on the screen during use of the Graphics mode.

Syntax:

CIRCLE(xcenter,ycenter),radius[,[color][,[start],[end][,aspect]]]

Comments:

xcenter and ycenter are the x- and y- coordinates of the center of the ellipse, and radius
is the radius (measured along the major axis) of the ellipse. The quantities xcenter and
ycenter can be expressions. The center attributes can use either absolute or relative
coordinates.

color specifies the color of the ellipse. Its value depends on the current screen mode.

See the COLOR and SCREEN statements for more information on using colors in different screen
modes.

In the high-resolution mode, 0 indicates black and 1 indicates white. The default for the high
resolution mode is 1.

The start and end angle parameters are radian arguments between -2*p  and 2* p which
specify where the drawing of the ellipse is to begin and end. If start or end is negative, the
ellipse is connected to the center point with a line, and the angles are treated as if they are
positive (note that this is different from adding 2* p ).

aspect describes the ratio of the x radius to the y radius (x:y). The default aspect ratio depends
on the screen mode, but gives a visual circle in either graphics mode, assuming a standard
monitor screen aspect ratio of 4:3.

If the aspect ratio is less than 1, then the radius is given in x-pixels. If it is greater than 1, the
radius is given in y-pixels.

In many cases, an aspect ratio of 1 gives better ellipses in the medium-resolution mode. This
also causes the ellipse to be drawn faster. The start angle may be less than the end angle.



GW-BASIC User's Reference - 21 -

Example 1:

10 SCREEN1: CIRCLE(100,100), 50

Draws a circle of radius 50, centered at graphics points 100x and 100y.

Example 2:

1 ' This will draw 17 ellipses
10 CLS
20 SCREEN 1
30 FOR R=160 TO 0 STEP-10
40 CIRCLE (160,100),R,,,,5/18
50 NEXT

Example 3:

10 'This will draw 5 spheres
20 GOTO 160
50 IF VERT GOTO 100
60 CIRCLE (X,Y),R,C,,,.07
70 FOR I = 1 TO 5
80 CIRCLE (X,Y),R,C,,,I*.2:NEXT I
90 IF VERT THEN RETURN
100 CIRCLE (X,Y),R,C,,,1.3
110 CIRCLE (X,Y),R,C,,,1.9
120 CIRCLE (X,Y),R,C,,,3.6
130 CIRCLE (X,Y),R,C,,,9.8
140 IF VERT GOTO 60
150 RETURN
160 CLS:SCREEN 1:COLOR 0,1:KEY OFF:VERT=0
170 X=160:Y=100:C=1:R=50:GOSUB 50
180 X=30:Y=30:C=2:R=30:GOSUB 50
190 X=30:Y=169:GOSUB 50
200 X=289:Y=30:GOSUB 50
210 X=289:Y=169:GOSUB 50
220 LINE (30,30)-(289,169),1
230 LINE (30,169)-(289,30),1
240 LINE (30,169)-(289,30),1,B
250 Z$=INKEY$: IF Z$="" THEN 250
RUN



GW-BASIC User's Reference - 22 -

CLEAR Command
Purpose:

To set all numeric variables to zero, all string variables to null, and to close all open files.
Options set the end of memory and reserve the amount of string and stack space available for
use by GW-BASIC.

Syntax:

CLEAR[,[expression1][,expression2]]

Comments:

expression1 is a memory location that, if specified, sets the maximum number of bytes
available for use by GW-BASIC.

expression2 sets aside stack space for GW-BASIC. The default is the previous stack space
size. When GW-BASIC is first executed, the stack space is set to 512 bytes, or one-eighth of the
available memory, whichever is smaller.

GW-BASIC allocates string space dynamically. An "Out of String Space" error occurs only
if there is no free memory left for GW-BASIC to use.

The CLEAR command:

o Closes all files

o Clears all COMMON and user variables

o Resets the stack and string space

o Releases all disk buffers

o Turns off any sound

o Resets sound to music foreground

o Resets PEN to off

o Resets STRIG to off

o Disables ON ERROR trapping



GW-BASIC User's Reference - 23 -

Examples:

CLEAR

Zeroes variables and nulls all strings.

CLEAR 32768

Zeroes variables, nulls strings, protects memory above 32768, does not change the stack space.

CLEAR ,,2000

Zeroes variables, nulls strings, allocates 2000 bytes for stack space, and uses all available
memory in the segment.

CLEAR ,32768,2000

Zeroes variables, nulls strings, protects memory above 32768, and allocates 2000 bytes for
stack space.



GW-BASIC User's Reference - 24 -

CLOSE Statement
Purpose:

To terminate input/output to a disk file or a device.

Syntax:

CLOSE [[#]filenumber[,[#]filenumber]...]

Comments:

filenumber is the number under which the file was opened.

The association between a particular file or device and file number terminates upon execution of
a CLOSE statement. The file or device may then be reopened using the same or a different file
number.

A CLOSE statement with no file number specified closes all open files and devices.

A CLOSE statement sent to a file or device opened for sequential output writes the final buffer of
output to that file or device.

The END, NEW, RESET, SYSTEM, or RUN and LOAD (without r option) statements always close all
files or devices automatically. STOP does not close files.

Examples:

250 CLOSE

This closes all open devices and files.

300 CLOSE 1,#2,#3

Closes all files and devices associated with file numbers 1, 2, and 3.



GW-BASIC User's Reference - 25 -

CLS Statement
Purpose:

To clear the screen.

Syntax:

CLS [n]

Comments:

n is one of the following values:

Value of n Effect

0  Clears the screen of all text and graphics

1 Clears only the graphics viewport

2 Clears only the text window

If the graphics viewport is active, CLS without argument clears only the viewport. If the graphics
viewport is inactive, CLS clears the text window.

If the screen is in alpha mode, the active page is cleared to the currently selected background
color (see the SCREEN and COLOR statements).

If the screen is in graphics mode, the entire screen buffer is cleared to background color.

The screen may also be cleared by pressing CTRL-HOME, or by changing the screen mode with
the SCREEN or WIDTH statements.

CLS returns the cursor to the upper-left corner of the screen, and sets the last point referenced
to the center of the screen.

If the VIEW statement has been used, CLS clears only the last viewport specified.

Examples:

1 CLS

This clears the screen.



GW-BASIC User's Reference - 26 -

COLOR Statement
Purpose:

To select display colors

Syntax:

COLOR [foreground][,[background][,border]]
COLOR [background][,[palette]]
COLOR [foreground][,[background]]

Comments:

In general, COLOR allows you to select the foreground and background colors for the display. In
SCREEN 0 a border color can also be selected. In SCREEN 1 no foreground color can be
selected, but one of two four-color palettes can be selected for use with graphics statements.
The different syntaxes and effects that apply to the various screen modes are described below:

Mode Effect

SCREEN 0 Modifies the current default text foreground and background colors, and the
screen border. The foreground  color must be an integer expression in the
range 0-31. It is used to determine the "foreground" color in text mode, which is
the default color of text. Sixteen colors can be selected with the integers 0-15. A
blinking version of each color can be selected by adding 16 to the color number;
for example, a blinking color 7 is equal to 7 + 16, or 23. Thus, the legal integer
range for foreground  is 0-31.

The background color must be an integer expression in the range 0-7, and is the
color of the background for each text character. Blinking colors are not permitted.

The border color is an integer expression in the range 0-15, and is the color
used when drawing the screen border. Blinking colors are not permitted.

If no arguments are provided to COLOR, then the default color for background and
border is black (color 0), and for foreground, is as described in the SCREEN
statement reference pages.



GW-BASIC User's Reference - 27 -

SCREEN 1 In mode 1, the COLOR statement has a unique syntax that includes a palette
argument, which is an odd or even integer expression. This argument determines
the set of display colors to use when displaying particular color numbers.

For hardware configurations that do not have an IBM ® Enhanced Graphics
Adapter (EGA), the default color settings for the palette parameter are equivalent
to the following:

COLOR ,0 'Same as the next three PALETTE
'statements
'1 = green, 2 = red, 3 = yellow

COLOR ,1 'Same as the next three PALETTE
'statements
'1 = cyan, 2 = magenta, 3 = hi.
'intens. white

With the EGA, the default color settings for the palette parameter are equivalent
to the following:

COLOR ,0     'Same as the next three PALETTE
  'statements

PALETTE 1,2  'Attribute 1 = color 3 (green)
PALETTE 2,4  'Attribute 2 = color 5 (red)
PALETTE 3,6  'Attribute 3 = color 6 (brown)

COLOR ,1     'Same as the next three PALETTE
  'statements

PALETTE 1,3  'Attribute 1 = color 3 (cyan)
PALETTE 2,5  'Attribute 2 = color 5 (magenta)
PALETTE 3,7  'Attribute 3 = color 15 (white)

Note that a COLOR statement will override previous PALETTE statements.

SCREEN 2 No effect. An "Illegal function call" error message occurs if COLOR is
used in this mode.



GW-BASIC User's Reference - 28 -

SCREEN 7- SCREEN 10

In these modes, no border color can be specified. The graphics background is
given by the background color number, which must be in the valid range of color
numbers appropriate to the screen mode. See the SCREEN statement reference
pages for more details. The foreground color argument is the default line
drawing color.

Arguments outside valid numeric ranges result in "Illegal function call" errors.

The foreground color may be the same as the background color, making displayed characters
invisible. The default background color is black, or color number 0, for all display hardware
configurations and all screen modes.

With the Enhanced Graphics Adapter (EGA) installed, the PALETTE statement gives you
flexibility in assigning different display colors to the actual color-number ranges for the
foreground, background, and border colors discussed above. See the PALETTE statement
reference pages for more details.

For more information, see CIRCLE, DRAW, LINE, PALETTE, PAINT, PRESET, PSET, SCREEN

Examples:

The following series of examples show COLOR statements and their effects in the various screen
modes:

SCREEN 0
COLOR 1, 2, 3 'foreground=1, background=2, border=3

SCREEN 1
COLOR 1,0 'foreground=1, even palette number
COLOR 2,1 'foreground=2, odd palette number

SCREEN 7
COLOR 3,5 'foreground=3, background=5

SCREEN 8
COLOR 6,7 'foreground=6, background=7

SCREEN 9
COLOR 1,2 'foreground=1, background=2



GW-BASIC User's Reference - 29 -

COM(n) Statement
Purpose:

To enable or disable trapping of communications activity to the specified communications
adapter.

Syntax:

COM(n) ON
COM(n) OFF
COM(n) STOP

Comments:

n is the number of the communications adapter 1 or 2.

Execute a COM(n) ON statement before ON COM(n) statement to allow trapping. After COM(n)
ON, if a nonzero number is specified in the ON COM(n) statement, BASIC checks every new
statement to see if any characters have come in the communication adapter.

With COM(n) OFF, no trapping takes place, and all communications activity will be lost.

With COM(n) STOP, no trapping takes place. However, any communication that takes place will
be remembered so that immediate trapping will occur when COM(n) ON is executed.



GW-BASIC User's Reference - 30 -

COMMON Statement
Purpose:

To pass variables to a chained program.

Syntax:

COMMON variables

Comments:

variables are one or more variables, separated by commas, that you want to pass to the
chained program.

The COMMON statement is used in conjunction with the CHAIN statement.

COMMON statements may appear anywhere in a program, although it is recommended that they
appear at the beginning.

Any number of COMMON statements may appear in a program, but the same variable cannot
appear in more than one COMMON statement. To pass all variables using the CHAIN statement,
use the all option, and omit the COMMON statement.

Place parentheses after the variable name to indicate array variables.

Examples:

100 COMMON A, B, C, D(),G$
110 CHAIN "A:PROG3"

This example chains to program PROG3 on disk drive A:, and passes the array D along with the
variables A, B, C, and string G$.



GW-BASIC User's Reference - 31 -

CONT Command
Purpose:

To continue program execution after a break.

Syntax:

CONT

Comments:

Resumes program execution after CTRL-BREAK, STOP, or END halts a program. Execution
continues at the point where the break happened. If the break took place during an INPUT
statement, execution continues after reprinting the prompt.

CONT is useful in debugging, in that it lets you set break points with the STOP statement, modify
variables using direct statements, continue program execution, or use GOTO to resume
execution at a particular line number.

If a program line is modified, CONT will be invalid.



GW-BASIC User's Reference - 32 -

COS Function
Purpose:

To return the cosine of the range of x.

Syntax:

COS(x)

Comments:

x must be the radians. COS is the trigonometric cosine function. To convert from degrees to
radians, multiply by p /180.

COS(x) is calculated in single precision unless the /d switch is used when GW-BASIC is
executed.

Example 1:

10 X=2*COS(.4)
20 PRINT X
RUN
 1.842122
Ok

Example 2:

10 PI=3.141593
20 PRINT COS(PI)
30 DEGREES=180
40 RADIANS=DEGREES*PI/180
50 PRINT COS(RADIANS)
RUN
-1
-1
OK



GW-BASIC User's Reference - 33 -

CSNG Function
Purpose:

To convert x to a single-precision number.

Syntax:

CSNG(x)

Comments:

x must be a numeric expression (see the CINT and CDBL functions).

Examples:

10 A#=975.3421222#
20 PRINT A#; CSNG(A#)
RUN
 975.3421222 975.3421
Ok



GW-BASIC User's Reference - 34 -

CSRLIN Variable
Purpose:

To return the current line (row) position of the cursor.

Syntax:

y=CSRLIN

Comments:

y is a numeric variable receiving the value returned. The value returned is within the range of 1
to 25.

The CSRLIN Variable returns the vertical coordinate of the cursor on the active page (see the
SCREEN statement).

x=POS(0) returns the column location of the cursor. The value returned is within the range of 1
to 40, or 1 to 80, depending on the current screen width (see the POS function).

Examples:

10 Y=CSRLIN
20 X=POS(0)
30 LOCATE 24,1
40 PRINT "HELLO"
50 LOCATE Y,X
RUN
HELLO
Ok

The CSRLIN Variable in line 10 records the current line.

The POS function in line 20 records the current column.

In line 40, the PRINT statement displays the comment "HELLO" on the 24th line of the screen.

The LOCATE statement in line 50 restores the position of the cursor to the original line and
column.



GW-BASIC User's Reference - 35 -

CVI, CVS, CVD Functions
Purpose:

To convert string values to numeric values.

Syntax:

CVI(2-byte string)
CVS(4-byte string)
CVD(8-byte string)

Comments:

Numeric values read in from a random-access disk file must be converted from strings back into
numbers if they are to be arithmetically manipulated.

CVI converts a 2-byte string to an integer. MKI$ is its complement.

CVS converts a 4-byte string to a single-precision number. MKS$ is its complement.

CVD converts an 8-byte string to a double-precision number. MKD$ is its complement.

(See MKI$, MKS$, and MKD$).

Examples:

. . .
70 FIELD #1,4 AS N$, 12 AS B$...
80 GET #1
90 Y=CVS(N$)

CVI, CVS, CVD Functions

Line 80 reads a field from file #1 (the field read is defined in line 70), and converts the first four
bytes (N$) into a single-precision number assigned to the variable Y.

Since a single-precision number can contain as many as seven ASCII characters (seven bytes),
writing a file using MKS$ conversion, and reading with the CVS conversion, as many as three
bytes per number recorded are saved on the storage medium. Even more may be saved if
double-precision numbers are required. MKD$ and CVD conversions would be used in this case.



GW-BASIC User's Reference - 36 -

DATA Statement
Purpose:

To store the numeric and string constants that are accessed by the program READ statement(s).

Syntax:

DATA constants

Comments:

constants are numeric constants in any format (fixed point, floating-point, or integer),
separated by commas. No expressions are allowed in the list.

String constants in DATA statements must be surrounded by double quotation marks only if they
contain commas, colons, or significant leading or trailing spaces. Otherwise, quotation marks are
not needed.

DATA statements are not executable and may be placed anywhere in the program. A DATA
statement can contain as many constants that will fit on a line (separated by commas), and any
number of DATA statements may be used in a program.

READ statements access the DATA statements in order (by line number). The data contained
therein may be thought of as one continuous list of items, regardless of how many items are on
a line or where the lines are placed in the program. The variable type (numeric or string) given in
the READ statement must agree with the corresponding constant in the DATA statement, or a
"Type Mismatch" error occurs.

DATA statements may be reread from the beginning by use of the RESTORE statement.

For further information and examples, see the RESTORE statement and the READ statement.



GW-BASIC User's Reference - 37 -

Example 1:

. . .
80 FOR I=1 TO 10
90 READ A(I)
100 NEXT I
110 DATA 3.08,5.19,3.12,3.98,4.24
120 DATA 5.08,5.55,4.00,3.16,3.37
. . .

This program segment reads the values from the DATA statements into array A. After execution,
the value of A(1) is 3.08, and so on. The DATA statements (lines 110-120) may be placed
anywhere in the program; they may even be placed ahead of the READ statement.

Example 2:

5 PRINT
10 PRINT "CITY","STATE","ZIP"
20 READ C$,S$,Z
30 DATA "DENVER,","COLORADO",80211
40 PRINT C$,S$,Z
RUN

CITY STATE ZIP
DENVER, COLORADO 80211
Ok

This program reads string and numeric data from the DATA statement in line 30.



GW-BASIC User's Reference - 38 -

DATE$ Statement and Variable
Purpose:

To set or retrieve the current date.

Syntax:

As a statement:
DATE$=v$

As a variable:
v$=DATE$

Comments:

v$ is a valid string literal or variable.
v$ can be any of the following formats when assigning the date:

mm-dd-yy
mm/dd/yy
mm-dd-yyyy
mm/dd/yyyy

If v$ is not a valid string, a "Type Mismatch" error results. Previous values are retained.

If any of the values are out of range or missing, an "Illegal Function Call" error is issued.
Any previous date is retained.

The current date (as assigned when the operating system was initialized) is fetched and
assigned to the string variable if DATE$ is the expression in a LET or PRINT statement.

The current date is stored if DATE$ is the target of a string assignment. With v$=DATE$, DATE$
returns a 10-character string in the form mm-dd-yyyy. mm is the month (01 to 12), dd is the day
(01 to 31), and yyyy is the year (1980 to 2099).

Examples:

v$=DATE$
Ok
PRINT V$
01-01-1985
Ok



GW-BASIC User's Reference - 39 -

DEF FN Statement
Purpose:

To define and name a function written by the user.

Syntax:

DEF FNname[arguments] expression

Comments:

name must be a legal variable name. This name, preceded by FN, becomes the name of the
function.

arguments consists of those variable names in the function definition that are to be replaced
when the function is called. The items in the list are separated by commas.

expression is an expression that performs the operation of the function. It is limited to one
statement.

In the DEF FN statement, arguments serve only to define the function; they do not affect
program variables that have the same name. A variable name used in a function definition may
or may not appear in the argument. If it does, the value of the parameter is supplied when the
function is called. Otherwise, the current value of the variable is used.

The variables in the argument represent, on a one-to-one basis, the argument variables or
values that are to be given in the function call.

User-defined functions may be numeric or string. If a type is specified in the function name, the
value of the expression is forced to that type before it is returned to the calling statement. If a
type is specified in the function name and the argument type does not match, a "Type
Mismatch" error occurs.

A user-defined function may be defined more than once in a program by repeating the DEF FN
statement.

A DEF FN statement must be executed before the function it defines may be called. If a function
is called before it has been defined, an "Undefined User Function" error occurs.

DEF FN is illegal in the direct mode.

Recursive functions are not supported in the DEF FN statement.



GW-BASIC User's Reference - 40 -

Examples:

. . .
400 R=1:S=2
410 DEF FNAB(X,Y)=X^3/Y^2
420 T=FNAB(R,S)
. . .

Line 410 defines the user-defined function FNAB. The function is called in line 420. When
executed, the variable T will contain the value R 3 divided by S 2,  or .25.



GW-BASIC User's Reference - 41 -

DEFINT/SNG/DBL/STR Statements
Purpose:

To declare variable types as integer, single-precision, double-precision, or string.

Syntax:

DEFtype letters

Comments:

type is INT (integer), SNG (single-precision number), DBL (double-precision number), or STR
(string of 0-255 characters).

letters are letters (separated by commas) or range of letters of the alphabet.

A DEFtype statement declares that variable names beginning with the letter(s) specify that type
of variable. However, a type declaration character (%,!,#,$) always takes precedence over a
DEFtype statement in the typing of a variable.

If no type declaration statements are encountered, BASIC assumes all variables are single-
precision. Single-precision is the default value.

Examples:

10 DEFDBL L-P

All variables beginning with the letters L, M, N, O, and P will be double-precision variables.

10 DEFSTR A
20 A="120#"

All variables beginning with the letter A will be string variables. The $ declaration is unnecessary
in this example.

10 DEFINT I-N,W-Z
20 W$="120#"

All variables beginning with the letters I, J, K, L, M, N, W, X, Y, Z will be integer variables. W$ in
Line 20 establishes a string variable beginning with the letter W. However, the variable W will
remain an integer elsewhere in the program.



GW-BASIC User's Reference - 42 -

DEF SEG Statement
Purpose:

To assign the current segment address to be referenced by a subsequent BLOAD, BSAVE, CALL,
PEEK, POKE, or USR.

Syntax:

DEF SEG [=address]

Comments:

address is a numeric expression within the range of 0 to 65535.

The address specified is saved for use as the segment required by BLOAD, BSAVE, PEEK,
POKE, and CALL statements.

Entry of any value outside the address range (0-65535) results in an "Illegal Function
Call" error, and the previous value is retained.

If the address option is omitted, the segment to be used is set to GW-BASIC's data segment
(DS). This is the initial default value. If you specify the address option,  base it on a 16-byte
boundary. Segment addresses are shifted 4 bits to the left; so  to get the segment address,
divide the memory location by 16.

For BLOAD, BSAVE, PEEK, POKE, or CALL statements, the value is shifted left four bits (this is
done by the microprocessor, not by GW-BASIC) to form the code segment address for the
subsequent call instruction (see the BLOAD, BSAVE, CALL, PEEK, and POKE statements).

GW-BASIC does not perform additional checking to assure that the resultant segment address is
valid.

Examples:

10 DEF SEG=&HB800
Sets segment to screen buffer.

20 DEF SEG
Restores segment to BASIC DS.

Note

DEF and SEG must be separated by a space. Otherwise, GW-BASIC will interpret the statement
DEFSEG=100 to mean, "assign the value 100 to the variable DEFSEG."



GW-BASIC User's Reference - 43 -

DEF USR Statement
Purpose:

To specify the starting address of an assembly language subroutine to be called from memory
by the USR function.

Syntax:

DEF USR[n]=integer

Comments:

n may be any digit from 0 to 9. The digit corresponds to the USR routine address being specified.
If n is omitted, DEF USR0 is assumed.

integer is the offset address of the USR routine. If more than 10 USR routines are required,
DEF USR[n] may appear in the program as many times as necessary to redefine the USR[n]
starting address.

Add the current segment value to the integer to get the starting address of  the user routine.

When an Assembly Language Subroutine is called, the GW-BASIC program execution is
paused, and control is transferred to the Assembly Language program. When that program is
executed, control is returned to the GW-BASIC program at the point of interruption.

Examples:

190 DEF SEG=0
200 DEF USR0=24000
210 X=USR0(Y^2/2.82)
. . .

Lines 190 and 200 set the absolute address.

Line 210 calls the USR routine located at that address, and passes the integer value of the
expression contained within the parentheses to the user program (see USR).

Note

This statement is given here primarily to provide compatibility with other GW-BASIC
implementations. The more versatile CALL statement should be used if this downward
compatibility is unimportant.



GW-BASIC User's Reference - 44 -

DELETE Command
Purpose:

To delete program lines or line ranges.

Syntax:

DELETE [line number1][-line number2]
DELETE line number1-

Comments:

line number1 is the first line to be deleted.

line number2 is the last line to be deleted.

GW-BASIC always returns to command level after a DELETE command is executed. Unless at
least one line number is given, an "Illegal Function Call" error occurs.

The period (.) may be used to substitute for either line number to indicate the current line.

Examples:

DELETE 40

Deletes line 40.

DELETE 40-100

Deletes lines 40 through 100, inclusively.

DELETE -40

Deletes all lines up to and including line 40.

DELETE 40-

Deletes all lines from line 40 to the end of the program.



GW-BASIC User's Reference - 45 -

DIM Statement
Purpose:

To specify the maximum values for array variable subscripts and allocate storage accordingly.

Syntax:

DIM variable(subscripts)[,variable(subscripts)]...

Comments:

If an array variable name is used without a DIM statement, the maximum value of its subscript(s)
is assumed to be 10. If a subscript greater than the maximum specified is used, a "Subscript
out of range" error occurs.

The maximum number of dimensions for an array is 255.

The minimum value for a subscript is always 0, unless otherwise specified with the OPTION
BASE statement.

An array, once dimensioned, cannot be redimensioned within the program without first executing
a CLEAR or ERASE statement.

The DIM statement sets all the elements of the specified arrays to an initial value of zero.

Examples:

10 DIM A(20)
20 FOR I=0 TO 20
30 READ A(I)
40 NEXT I

This example reads 21 DATA statements elsewhere in the program and assigns their values to
A(0) through A(20), sequentially and inclusively. If the A array is single precision (default
accuracy) then line 10 will allocate 84 bytes of memory to this array (4 bytes times 21 elements).



GW-BASIC User's Reference - 46 -

DRAW Statement
Purpose:

To draw a figure.

Syntax:

DRAW string expression

Comments:

The DRAW statement combines most of the capabilities of the other graphics statements into an
object definition language called Graphics Macro Language (GML). A GML command is a single
character within a string, optionally followed by one or more arguments.

The DRAW statement is valid only in graphics mode.

Movement Commands: Each of the following movement commands begins movement from the
current graphics position. This is usually the coordinate of the last graphics point plotted with
another GML command, LINE, or PSET. The current position defaults to the center of the screen
(160,100 in medium resolution; 320,100 in high resolution) when a program is run. Movement
commands move for a distance of scale factor *n, where the default for n is 1; thus, they move
one point if n is omitted and the default scale factor is used.

Command Moves

Un up

Dn down

Ln left

Rn right

En diagonally up and right

Fn diagonally down and right

Gn diagonally down and left

Hn diagonally up and left



GW-BASIC User's Reference - 47 -

This command moves as specified by the following argument:

Mx,y Move absolute or relative. If x is preceded by a + or -, x and y are added
to the current graphics position, and connected to the current position by a
line. Otherwise, a line is drawn to point x,y from the current position.

The following prefix commands may precede any of the above movement commands:

B Move, but plot no points.

N Move, but return to original position when done.

The following commands are also available:

An Set angle n. n may range from 0 to 3, where 0 is 0°, 1 is 90°, 2 is 180°,
and 3 is 270°. Figures rotated 90° or 270° are scaled so that they will
appear the same size as with 0° or 180° on a monitor screen with the
standard aspect ratio of 4:3.

TAn Turn angle n. n can be any value from negative 360 to positive 360. If the
value specified by n is positive, it turns the angle counter-clockwise. If the
value specified by n is negative, it turns clockwise.

Cn Set color n. See the COLOR, PALETTE, and SCREEN statements for
discussions of valid colors, numbers and attributes.

Sn Set scale factor. n may range from 1 to 255. n is divided by 4 to derive the
scale factor. The scale factor is multiplied by the distances given with U, D,
L, R, E, F, G, H, or relative M commands to get the actual distance traveled.
The default for S is 4.

xstring; Execute substring. This command executes a second substring from a
variable string, much like GOSUB. One string executes another, which executes a

third, and so on.

string is a variable assigned to a string of movement commands.



GW-BASIC User's Reference - 48 -

Ppaint, Specifies the colors for a graphics figure and creates a filled-in figure.
boundary

paint specifies what color you want the figure filled in with.

boundary specifies the border color (outline).

See the COLOR, PALETTE, and SCREEN statements for discussions of valid
colors, numbers and attributes.

You must specify values for both paint and boundary when used.

This command (Ppaint,boundary) does not paint color tiling.

Numeric Arguments:

Numeric arguments can be constants like "123" or "=variable;", where variable is the name
of a variable.

When you use the second syntax, "=variable;", the semicolon must be used. Otherwise, the
semicolon is optional between commands.

You can also specify variables using VARPTR$(variable).



GW-BASIC User's Reference - 49 -

Example 1:

To draw a box in medium resolution:

10 SCREEN 1
20 A=20
30 DRAW "U=A;R=A;D=A;L=A;"
RUN

Example 2:

The aspect ratio to draw a square on a standard screen is 4:3, as shown below:

To draw a 96 pixel-wide square on a 640 x 200 pixel screen (SCREEN 2), do the following
calculations:

Horizontal value = 96
Vertical value = 96*(200/640)*(4/3)

or

Vertical value = 40
Horizontal value = 40*(640/200)*(3/4)

The horizontal values equals 4/3 of the vertical values.

Example 3:

To draw a triangle in medium resolution:

10 CLS
20 SCREEN 1
30 PSET (60,125)
40 DRAW "E100; F100; L199"
RUN



GW-BASIC User's Reference - 50 -

EDIT Command
Purpose:

To display a specified line, and to position the cursor under the first digit of the line number, so
that the line may be edited.

Syntax:

EDIT line number
EDIT .

Comments:

line number is the number of a line existing in the program.

A period (.) refers to the current line. The following command enters EDIT at the current line:

EDIT .

When a line is entered, it becomes the current line.

The current line is always the last line referenced by an EDIT statement, LIST command, or
error message.

If line number refers to a line which does not exist in the program, an "Undefined Line
Number" error occurs.

Examples:

EDIT 150

Displays program line number 150 for editing.



GW-BASIC User's Reference - 51 -

END Statement
Purpose:

To terminate program execution, close all files, and return to command level.

Syntax:

END

Comments:

END statements may be placed anywhere in the program to terminate execution.

Unlike the STOP statement, END does not cause a "Break in line xxxx" message to be
printed.

An END statement at the end of a program is optional. GW-BASIC always returns to command
level after an END is executed.

END closes all files.

Examples:

520 IF K>1000 THEN END ELSE GOTO 20

Ends the program and returns to command level whenever the value of K exceeds 1000.



GW-BASIC User's Reference - 52 -

ENVIRON Statement
Purpose:

To allow the user to modify parameters in GW-BASIC's environment string table. This may be to
change the path parameter for a child process, (see ENVIRON$, SHELL, and the MS-DOS
utilities PATH command), or to pass parameters to a child by inventing a new environment
parameter.

Syntax:

ENVIRON string

Comments:

string is a valid string expression containing the new environment string parameter.

string must be of the following form

parmid=text

where parmid is the name of the parameter such as PATH.

parmid must be separated from text by an equal sign or a blank. ENVIRON takes everything to
the left of the first blank or equal sign as the parmid; everything following is taken as text.

text is the new parameter text. If text is a null string, or consists only of a single semicolon,
then the parameter (including parmid=) is removed from the environment string table, and the
table is compressed. text must not contain any embedded blanks.

If parmid does not exist, then string is added at the end of the environment string table.

If parmid does exist, it is deleted, the environment string table is compressed, and the new
string is added at the end.



GW-BASIC User's Reference - 53 -

Examples:

Assuming the environment string table is empty, the following statement will create a default
path to the root directory on Disk A:

ENVIRON "PATH=A:\"

If your work subdirectory were john, you would be able to get DEBUG from the root.

A new parameter may be added:

ENVIRON "COMSPEC=A:\COMMAND.COM"

The environment string table now contains

PATH=A:\;COMSPEC=A:\COMMAND.COM

The path may be changed to a new value:

ENVIRON "PATH=A:\SALES;A:\ACCOUNTING"

The path parameter may be appended by using the ENVIRON$ function with the ENVIRON
statement:

ENVIRON "PATH="+ENVIRON$("PATH")+";B:\SAMPLES"

Finally, delete the parameter COMSPEC:

ENVIRON "COMSPEC=;"

The environment string table now contains

PATH=A:\SALES;A:\ACCOUNTING;B:\SAMPLES



GW-BASIC User's Reference - 54 -

ENVIRON$ Function
Purpose:

To allow the user to retrieve the specified environment string from the environment table.

Syntax:

v$=ENVIRON$(parmid)
v$=ENVIRON$(nthparm)

Comments:

parmid is a valid string expression containing the parameter to search for.

nthparm is an integer expression in the range of 1 to 255.

If a string argument is used, ENVIRON$ returns a string containing the text following parmid=
from the environment string table.

If parmid is not found, then a null string is returned.

If a numeric argument is used, ENVIRON$ returns a string containing the nth parameter from the
environment string table.

If there is no nth parameter, then a null string is returned.

The ENVIRON$ function distinguishes between upper- and lowercase.

Examples:

The following lines:

ENVIRON "PATH=A:\SALES;A:\ACOUNTING;B:\MKT:" 'Create entry
PRINT ENVIRON$("PATH") 'Print entry

will print the following string:

A:\SALES;A:\ACCOUNTING;B:\MKT

The following line will print the first string in the environment:

PRINT ENVIRON$(1)



GW-BASIC User's Reference - 55 -

The following program saves the environment string table in an array so that it can be modified
for a child process. After the child process completes, the environment is restored.

10 DIM ENVTBL$(10) "
20 NPARMS= 1
30 WHILE LEN(ENVIRON$(NPARMS)) >0
40 ENVTBL$ (NPARMS)= ENVIRON$(NPARMS)
50 NPARMS= NPARMS + 1
60 WEND
70 NPARMS= NPARMS-1
72 WHILE LEN(ENVIRON$(1))>0
73 A$=MID$(ENVIRON$(1),1,INSTR (ENVIRON$(1),"="))
74 ENVIRON A$+";"
75 WEND
90 ENVIRON "MYCHILDPARM1=SORT BY NAME"
100 ENVIRON "MYCHILDPARM2=LIST BY NAME"
1000 SHELL "MYCHILD"'RUNS "MYCHILD.EXE"
1002 WHILE LEN(ENVIRON$(1))>0
1003 A$=MID$(ENVIRON$(1),1,INSTR(ENVIRON$ (1),"="))
1004 ENVIRON A$+";"
1005 WEND
1010 FOR I=1 TO NPARMS
1020 ENVIRON ENVTBL$(I)
1030 NEXT I

The DIM statement in line 10 assumes no more than 10 parameters will be accessed.

In line 20, the initial number of parameters is established as 1.

In lines 30 through 70, a series of statements are used to adjust and correct the parameter
numbers.

Line 71 deletes the present environment.

Lines 72 through 80 create a new environment. Line 74 deletes the string.

Lines 80 through 100 store the new environment.

Lines 1000 through 1030 repeat the procedure by deleting the present environment and restore
the parameters established in the first part of the program.



GW-BASIC User's Reference - 56 -

EOF Function
Purpose:

To return -1 (true) when the end of a sequential or a communications file has been reached, or
to return 0 if end of file (EOF) has not been found.

Syntax:

v=EOF(file number)

Comments:

If a GET is done past the end of the file, EOF returns -1. This may be used to find the size of a file
using a binary search or other algorithm. With communications files, a -1 indicates that the buffer
is empty.

Use EOF to test for end of file while inputting to avoid "Input Past End" errors.

Examples:

10 OPEN "I",1,"DATA"
20 C=0
30 IF EOF(1) THEN 100
40 INPUT#1,M(C)
50 C=C+1:GOTO 30
100 END
RUN

The file named DATA is read into the M array until the end of the file is reached, then the
program branches to line 100.



GW-BASIC User's Reference - 57 -

ERASE Statement
Purpose:

To eliminate arrays from a program.

Syntax:

ERASE list of array variables

Comments:

Arrays may be redimensioned after they are erased, or the memory space previously allocated
to the array may be used for other purposes.

If an attempt is made to redimension an array without first erasing it, an error occurs.

Examples:

200 DIM B (250)
. . .
450 ERASE A,B
460 DIM B(3,4)

Arrays A and B are eliminated from the program. The B array is redimensioned to a 3-column by
4-row array (12 elements), all of which are set to a zero value.



GW-BASIC User's Reference - 58 -

ERDEV and ERDEV$ Variables
Purpose:

To return the actual value (ERDEV) of a device error, and the name of the device (ERDEV$)
causing the error.

Syntax:

ERDEV
ERDEV$

Comments:

ERDEV will contain the error code from interrupt 24H in the lower 8 bits. Bits 8 to 15 from the
attribute word in the Device Header Block are mapped directly into the upper 8 bits.

ERDEV$ will contain the 8-byte character device name if the error was on a character device. It
will contain the 2 byte block device name (A:, B:, etc.) if the device was not a character device.

Examples:

Installed device driver lpt2: caused a "Printer out of paper" error via INT 24H.

ERDEV contains the error number 9 in the lower 8 bits, while the upper 8 bits contain the upper
byte of the Device Header word attributes.

ERDEV$ contains "LPT2:   ".



GW-BASIC User's Reference - 59 -

ERR and ERL Variables
Purpose:

To return the error code (ERR) and line number (ERL) associated with an error.

Syntax:

v=ERR
v=ERL

Comments:

The variable ERR contains the error code for the last occurrence of an error. All the error codes
and their definitions are listed in Appendix A of the GW-BASIC User's Guide. The variable ERL
contains the line number of the line in which the error was detected.

The ERR and ERL Variables are usually used in IF-THEN, or ON ERROR...GOTO, or GOSUB
statements to direct program flow in error trapping.

If the statement that caused the error was a direct mode statement, ERL will contain 65535. To
test if an error occurred in a direct mode statement, use a line of the following form:

IF 65535=ERL THEN ...

Otherwise, use the following:

10 IF ERR=error code THEN...GOSUB 4000
20 IF ERL=line number THEN...GOSUB 4010

ERR and ERL Variables
_________________________________________________________________________

Note

If the line number is not on the right side of the relational operator, it cannot be renumbered by
RENUM.
_________________________________________________________________________

Because ERL and ERR are reserved variables, neither may appear to the left of the equal sign in
a LET (assignment) statement.



GW-BASIC User's Reference - 60 -

ERROR Statement
Purpose:

To simulate the occurrence of an error, or to allow the user to define error codes.

Syntax:

ERROR integer expression

Comments:

The value of integer expression must be greater than 0 and less than 255.

If the value of integer expression equals an error code already in use by GW-BASIC, the
ERROR statement simulates the occurrence of that error, and the corresponding error message is
printed.

A user-defined error code must use a value greater than any used by the GW-BASIC error
codes. There are 76 GW-BASIC error codes at present. It is preferable to use a code number
high enough to remain valid when more error codes are added to GW-BASIC.

User-defined error codes may be used in an error-trapping routine.

If an ERROR statement specifies a code for which no error message has been defined, GW-
BASIC responds with the message "Unprintable Error".

Execution of an ERROR statement for which there is no error-trapping routine causes an error
message to be printed and execution to halt.

For a complete list of the error codes and messages already defined in GW-BASIC, refer to
Appendix A in the GW-BASIC User's Guide.



GW-BASIC User's Reference - 61 -

Examples:

The following examples simulate error 15 (the code for "String too long"):

LIST
10 S=10
20 T=5
30 ERROR S+T
40 END
Ok
RUN
String too long in 30

Or, in direct mode:

Ok
ERROR 15 (you type this line)
String too long (GW-BASIC types this line)
Ok

The following example includes a user-defined error code message.

110 ON ERROR GOTO 400
120 INPUT "WHAT IS YOUR BET";B
130 IF B>5000 THEN ERROR 210

400 IF ERR=210 THEN PRINT "HOUSE LIMIT IS $5000"
410 IF ERL=130 THEN RESUME 120



GW-BASIC User's Reference - 62 -

EXP Function
Purpose:

To return e (the base of natural logarithms) to the power of x.

Syntax:

EXP(x)

Comments:

x must be less than 88.02969.

If EXP overflows, the "Overflow" error message appears; machine infinity with the appropriate
sign is supplied as the result, and execution continues.

EXP(x) is calculated in single precision, unless the /d switch is used when GW-BASIC is
executed.

Examples:

10 X = 5
20 PRINT EXP(X-1)
RUN
54.59815
Ok

Prints the value of e to the 4th power.



GW-BASIC User's Reference - 63 -

EXTERR Function
Purpose:

To return extended error information.

Syntax:

EXTERR(n)

Comments:

EXTERR returns "extended" error information provided by versions of DOS 3.0 and greater. For
versions of DOS earlier than 3.0, EXTERR always returns zero. The single integer argument
must be in the range 0-3 as follows:

Value of n  Return Value

0 Extended error code

1 Extended error class

2 Extended error suggested action

3 Extended error locus

The values returned are not defined by GW-BASIC, but by DOS. Refer to the MS-DOS
Programmer's Reference (version 3.0 or later) for a description of the values returned by the
DOS extended error function.

The extended error code is actually retrieved and saved by GW-BASIC each time appropriate
DOS functions are performed. Thus when an EXTERR function call is made, these saved values
are returned.



GW-BASIC User's Reference - 64 -

FIELD Statement
Purpose:

To allocate space for variables in a random file buffer.

Syntax:

FIELD [#] filenum, width AS stringvar [,width AS stringvar]...

Comments:

filenum is the number under which the file was opened.

width is the number of characters to be allocated to the string variable.

string variable is a string variable which will be used for random file access.

A FIELD statement must have been executed before you can

o get data out of a random buffer after a GET statement

o enter data before a PUT statement

For example, the following line allocates the first 20 positions (bytes) in the random file buffer to
the string variable N$, the next 10 positions to ID$, and the next 40 positions to ADD$:

FIELD 1, 20 AS N$, 10 AS ID$, 40 AS ADD$

FIELD only allocates space, it does not place any data in the random file buffer.

The total number of bytes allocated in a FIELD statement must not exceed the record length
specified when the file was opened. Otherwise, a "Field overflow" error occurs (the default
record length is 128).

Any number of FIELD statements may be executed for the same file, and all FIELD statements
executed are in effect at the same time.

Note

Do not use a fielded variable name in an INPUT or LET statement. Once a variable name is
fielded, it points to the correct place in the random file buffer.  If a subsequent INPUT or LET
statement with that variable name is executed, the variable's pointer is moved to string space
(see LSET/RSET and GET statements).



GW-BASIC User's Reference - 65 -

FILES Command
Purpose:

To print the names of the files residing on the specified drive.

Syntax:

FILES [pathname]

Comments:

If pathname is omitted, the command lists all files in the current directory of the selected drive.
pathname may contain question marks (?) to match any character in the filename or extension.
An asterisk (*) as the first character of the filename or extension will match any file or any
extension.

This syntax also displays the name of the directory and the number of bytes in the file. When a
tree-structured directory is used, two special symbols also appear.

Subdirectories are denoted by <DIR> following the directory name.

Examples:

FILES
FILES "*.BAS"
FILES "B:*.*"
FILES "TEST?.BAS"

FILES now allows pathnames. The directory for the specified path is displayed. If an explicit
path is not given, the current directory is assumed.

FILES "ACCTS\"

Lists all files in the directory named accts that are on the diskette in Drive B: and have the
extension of .pay.

FILES "B:ACCTS\*.PAY"

Lists all files in the directory named accts that are on the diskette in Drive B: and have the
extension of .PAY.



GW-BASIC User's Reference - 66 -

FIX Function
Purpose:

To truncate x to a whole number.

Syntax:

FIX(x)

Comments:

FIX does not round off numbers, it simply eliminates the decimal point and all characters to the
right of the decimal point.

FIX(x) is equivalent to SGN(x)*INT(ABS(x)). The major difference between FIX and INT
is that FIX does not return the next lower number for negative x.

FIX is useful in modulus arithmetic.

Examples:

PRINT FIX(58.75)
 58
Ok

PRINT FIX(-58.75)
 -58
Ok



GW-BASIC User's Reference - 67 -

FOR and NEXT Statements
Purpose:

To execute a series of instructions a specified number of times in a loop.

Syntax:

FOR variable=x TO y [STEP z]
. . .
NEXT [variable][,variable...]

Comments:

variable is used as a counter.

x,y, and z are numeric expressions.

STEP z specifies the counter increment for each loop.

The first numeric expression (x) is the initial value of the counter. The second numeric
expression (y) is the final value of the counter.

Program lines following the FOR statement are executed until the NEXT statement is
encountered. Then, the counter is incremented by the amount specified by STEP.

If STEP is not specified, the increment is assumed to be 1.

A check is performed to see if the value of the counter is now greater than the final value (y). If it
is not greater, GW-BASIC branches back to the statement after the FOR statement, and the
process is repeated. If it is greater, execution continues with the statement following the NEXT
statement. This is a FOR-NEXT loop.

The body of the loop is skipped if the initial value of the loop times the sign of the step exceeds
the final value times the sign of the step.

If STEP is negative, the final value of the counter is set to be less than the initial value. The
counter is decremented each time through the loop, and the loop is executed until the counter is
less than the final value.



GW-BASIC User's Reference - 68 -

Nested Loops:

FOR-NEXT loops may be nested; that is, a FOR-NEXT loop may be placed within the context of
another FOR-NEXT loop. When loops are nested, each loop must have a unique variable name
as its counter.

The NEXT statement for the inside loop must appear before that for the outside loop.

If nested loops have the same end point, a single NEXT statement may be used for all of them.

The variable(s) in the NEXT statement may be omitted, in which case the NEXT statement
will match the most recent FOR statement.

If a NEXT statement is encountered before its corresponding FOR statement, a "NEXT without
FOR" error message is issued and execution is terminated.

Examples:

The following example prints integer values of the variable I% from 1 to 10 in steps of z. For
fastest execution, I is declared as an integer by the % sign.

10 K=10
20 FOR I%=1 TO K STEP 2
30 PRINT I%

60 NEXT
RUN
 1
 3
 5
 7
 9
Ok

In the following example, the loop does not execute because the initial value of the loop exceeds
the final value. Nothing is printed by this example.

10 R=0
20 FOR S=1 TO R
30 PRINT S
40 NEXT S

In the next example, the loop executes 10 times. The final value for the loop variable is always
set before the initial value is set.



GW-BASIC User's Reference - 69 -

10 S=5
20 FOR S=1 TO S+5
30 PRINT S;
40 NEXT
RUN
 1 2 3 4 5 6 7 8 9 10
Ok

FRE Function
Purpose:

To return the number of available bytes in allocated string memory.

Syntax:

FRE(x$)
FRE(x)

Comments:

Arguments (x$) and (x) are dummy arguments.

Before FRE (x$) returns the amount of space available in allocated string memory, GW-BASIC
initiates a "garbage collection" activity. Data in string memory space is collected and
reorganized, and unused portions of fragmented strings are discarded to make room for new
input.

If FRE is not used, GW-BASIC initiates an automatic garbage collection activity when  all string
memory space is used up. GW-BASIC will not initiate garbage collection  until all free memory
has been used. Garbage collection may take 1 to 1.5 minutes.

FRE("") or any string forces a garbage collection before returning the number of free bytes.
Therefore, using FRE("") periodically will result in shorter delays for each garbage collection.

It should be noted that the CTRL-BREAK function cannot be used during this housecleaning
process.

Examples:

PRINT FRE(0)
 14542
Ok

Your computer may return a different value.



GW-BASIC User's Reference - 70 -

GET Statement (Files)
Purpose:

To read a record from a random disk file into a random buffer.

Syntax:

GET [#]file number[,record number]

Comments:

file number is the number under which the file was opened.

record number is the number of the record, within the range of 1 to 16,777,215.

If record number is omitted, the next record (after the last GET) is read into the buffer.

After a GET statement, INPUT# and LINE INPUT# may be used to read characters from the
random file buffer.

GET may also be used for communications files. record number is the number of bytes to be
read from the communications buffer. record number cannot exceed the buffer length set in
the OPEN COM(n) statement.

Examples:

The following example opens the vendor file for random access, defines the fields, reads a
record, then displays it:

10 OPEN "R",1,"A:VENDOR.FIL"
20 FIELD 1,30 AS VENDNAMES$,20 AS ADDR$,15 AS CITY$
30 GET 1
40 PRINT VENDNAMES$,ADDR$,CITY$
50 CLOSE 1

This example opens the file vendor.fil for random access, with fields defined in line 20. In line 30,
the GET statement reads a record into the file buffer. Line 40 displays the information from the
record just read. Line 50 closes the file.



GW-BASIC User's Reference - 71 -

GET Statement (Graphics)
Purpose:

To transfer graphics images from the screen.

Syntax:

GET (x1,y1)-(x2,y2),array name

Comments:

The PUT and GET statements are used to transfer graphics images to and from the screen. PUT
and GET make animation and high-speed object motion possible in either graphics mode.

The GET statement transfers the screen image bounded by the rectangle described by the
specified points into the array. The rectangle is defined the same way as the rectangle drawn by
the LINE statement using the ,B option.

The array is used simply as a place to hold the image, and can be of any type except string. It
must be dimensioned large enough to hold the entire image. The contents of the array after a
GET will be meaningless when interpreted directly (unless the array is of the type integer, as
shown below).

The storage format in the array is as follows:

o 2 bytes given x dimension in bits

o 2 bytes given y dimension in bits

o the array data itself



GW-BASIC User's Reference - 72 -

The data for each row of pixels is left-justified on a byte boundary. If less than a multiple of eight
bits is stored, the rest of the byte will be filled out with zeros. The required array size in bytes is
as follows:

4+INT((x*bitsperpixel+7)/8)*y

See the SCREEN statement for bits-per-pixel values for different screen modes.

The bytes-per-element of an array are as follows:

o 2 for integer

o 4 for single-precision

o 8 for double-precision

The number of bytes required to get a 10 by 12 image into an integer array is
4+INT((10*2+7)/8)*12, or 40 bytes. An integer array with at least 20 elements is necessary.

If OPTION BASE equals zero, an integer array can be used to examine the x and y dimensions
and the data. The x dimension is in element 0 of the array, and the y dimension is in element 1.
Integers are stored low byte first, then high byte, but data is transferred high byte first (left-most),
then low byte.

It is possible to get an image in one mode and put it in another, although the effect may be quite
strange because of the way points are represented in each mode.

Examples:

10 CLS:SCREEN 1
20 PSET(130,120)
30 DRAW "U25;E7;R20;D32;L6;U12;L14"
40 DRAW "D12;L6":PSET(137,102)
50 DRAW "U4;E4;R8;D8;L12"
60 PSET(137,88)
70 DRAW "E4;R20;D32;G4":PAINT(139,87)
80 DIM A(500)
90 GET (125,130)-(170,80),A
100 FOR I=1 TO 1000:NEXT I
110 PUT (20,20),A,PSET
120 FOR I=1 TO 1000:NEXT I
130 GET (125,130)-(170,80),A
140 FOR I=1 TO 1000:NEXT I
150 PUT (220,130),A,PRESET



GW-BASIC User's Reference - 73 -

GOSUB...RETURN Statement
Purpose:

To branch to, and return from, a subroutine.

Syntax:

GOSUB line number
. . .
RETURN [line number]

Comments:

line number is the first line number of the subroutine.

A subroutine may be called any number of times in a program, and a subroutine may be called
from within another subroutine. Such nesting of subroutines is limited only by available memory.

A RETURN statement in a subroutine causes GW-BASIC to return to the statement following the
most recent GOSUB statement. A subroutine can contain more than one RETURN statement,
should logic dictate a RETURN at different points in the subroutine.

Subroutines can appear anywhere in the program, but must be readily distinguishable from the
main program.

To prevent inadvertent entry, precede the subroutine by a STOP, END, or GOTO statement to
direct program control around the subroutine.

Examples:

10 GOSUB 40
20 PRINT "BACK FROM SUBROUTINE"
30 END
40 PRINT "SUBROUTINE";
50 PRINT " IN";
60 PRINT " PROGRESS"
70 RETURN
RUN
SUBROUTINE IN PROGRESS
BACK FROM SUBROUTINE
Ok

The END statement in line 30 prevents re-execution of the subroutine.



GW-BASIC User's Reference - 74 -

GOTO Statement
Purpose:

To branch unconditionally out of the normal program sequence to a specified line number.

Syntax:

GOTO line number

Comments:

line number is any valid line number within the program.

If line number is an executable statement, that statement and those following are executed. If
it is a non-executable statement, execution proceeds at the first executable statement
encountered after line number.

Examples:

10 READ R
20 PRINT "R =";R;
30 A = 3.14*R^2
40 PRINT "AREA =";A
50 GOTO 10
60 DATA 5,7,12
RUN
R = 5 AREA = 78.5
R = 7 AREA = 153.86
R = 12 AREA = 452.16
Out of data in 10
Ok

The "out of data" advisory is generated when the program attempts to read a fourth DATA
statement (which does not exist) in line 60.



GW-BASIC User's Reference - 75 -

HEX$ Function
Purpose:

To return a string which represents the hexadecimal value of the numeric argument.

Syntax:

v$=HEX$(x)

Comments:

HEX$ converts decimal values within the range of -32768 to +65535 into a hexadecimal string
expression within the range of 0 to FFFF.

Hexadecimal numbers are numbers to the base 16, rather than base 10 (decimal numbers).
Appendixes C and G in the GW-BASIC User's Guide contain more information on hexadecimals
and their equivalents.

x is rounded to an integer before HEX$(x) is evaluated. See the OCT$ function for octal
conversions.

If x is negative, 2's (binary) complement form is used.

Examples:

10 CLS:INPUT "INPUT DECIMAL NUMBER";X
20 A$=HEX$(X)
30 PRINT X "DECIMAL IS "A$" HEXADECIMAL"
RUN
INPUT DECIMAL NUMBER? 32
 32 DECIMAL IS 20 HEXADECIMAL
Ok



GW-BASIC User's Reference - 76 -

IF Statement
Purpose:

To make a decision regarding program flow based on the result returned by an expression.

Syntax:

IF expression[,] THEN statement(s)[,][ELSE statement(s)]
IF expression[,] GOTO line number[[,] ELSE statement(s)]

Comments:

If the result of expression is nonzero (logical true), the THEN or GOTO line number is executed.

If the result of expression is zero (false), the THEN or GOTO line number is ignored and the
ELSE line number, if present, is executed. Otherwise, execution continues with the next
executable statement. A comma is allowed before THEN and ELSE.

THEN and ELSE may be followed by either a line number for branching, or one or more
statements to be executed.

GOTO is always followed by a line number.

If the statement does not contain the same number of ELSE's and THEN's line number, each
ELSE is matched with the closest unmatched THEN. For example:

IF A=B THEN IF B=C THEN PRINT "A=C" ELSE PRINT "A < > C"

will not print "A < > C" when A < > B.

If an IF...THEN statement is followed by a line number in the direct mode, an "Undefined line
number" error results, unless a statement with the specified line number was previously entered
in the indirect mode.

Because IF ..THEN...ELSE is all one statement, the ELSE clause cannot be on a separate
line. It must be all on one line.



GW-BASIC User's Reference - 77 -

Nesting of IF Statements

IF...THEN...ELSE statements may be nested. Nesting is limited only by the length of the line.
For example, the following is a legal statement:

100 IF X > Y THEN PRINT "GREATER" ELSE IF Y > X THEN&
110 PRINT "LESS THAN"
200 ELSE PRINT "EQUAL"

Testing Equality

When using IF to test equality for a value that is the result of a floating-point computation,
remember that the internal representation of the value may not be exact. Therefore, test against
the range over which the accuracy of the value may vary.

For example, to test a computed variable A against the value 1.0, use the following statement:

IF ABS (A-1.0)<1.0E-6 THEN ...

This test returns true if the value of A is 1.0 with a relative error of less than 1.0E-6.

Examples:

The following statement gets record number N, if N is not zero.

200 IF N THEN GET#1,N

In the following example, a test determines if N is greater than 10 and less than 20. If N is within
this range, DB is calculated and execution branches to line 300. If N is not within this range,
execution continues with line 110.

100 IF(N<20) and (N>10) THEN DB=1979-1:GOTO 300
110 PRINT "OUT OF RANGE"

The next statement causes printed output to go either to the terminal or the line printer,
depending on the value of a variable (IOFLAG). If IOFLAG is zero, output goes to the line
printer; otherwise, output goes to the terminal.

210 IF IOFLAG THEN PRINT A$ ELSE LPRINT A$



GW-BASIC User's Reference - 78 -

INKEY$ Variable
Purpose:

To return one character read from the keyboard.

Syntax:

v$=INKEY$

Comments:

If no character is pending in the keyboard buffer, a null string (length zero) is returned.

If several characters are pending, only the first is returned. The string will be one or two
characters in length.

Two character strings are used to return the extended codes described in Appendix C of the
GW-BASIC User's Guide. The first character of a two character code is zero.

No characters are displayed on the screen, and all characters except the following are passed to
the program:

CTRL-BREAK
CTRL-NUM-LOCK
CTRL-ALT-DEL
CTRL-PRTSC
PRTSC

Examples:

10 CLS: PRINT"PRESS RETURN
20 TIMELIMIT% = 1000
30 GOSUB 1010
40 IF TIMEOUT% THEN PRINT "TOO LONG" ELSE PRINT "GOOD SHOW"
50 PRINT RESPONSE$
60 END
1000 REM TIMED INPUT SUBROUTINE
1010 RESPONSE$=""
1020 FOR N%=1 TO TIMELIMIT%
1030 A$=INKEY$:IF LEN(A$)=0 THEN 1060
1040 IF ASC(A$)=13 THEN TIMEOUT%=0:RETURN
1050 RESPONSE$=RESPONSE$+A$
1060 NEXT N%
1070 TIMEOUT%=1:RETURN

When this program is executed, and if the RETURN key is pressed before 1000 loops are
completed, then "GOOD SHOW" is printed on the screen. Otherwise, "TOO LONG" is printed.



GW-BASIC User's Reference - 79 -

Since an INKEY$ statement scans the keyboard only once, place INKEY$ statements within
loops to provide adequate response times for the operator.

INP Function
Purpose:

To return the byte read from machine port n.

Syntax:

INP(n)

Comments:

n represents a valid machine port number within the range of 0 to 65535.

The INP function is one way in which a peripheral device may communicate with a GW-BASIC
program.

INP is the complementary function to the OUT statement.

Examples:

100 A=INP(56)

Upon execution, variable A contains the value present on port 56. The number returned will be
within the range of 0 to 255, decimal.

The assembly language equivalent to this statement is

MOV DX,56
IN AL,DX



GW-BASIC User's Reference - 80 -

INPUT Statement
Purpose:

To prepare the program for input from the terminal during program execution.

Syntax:

INPUT[;][prompt string;] list of variables
INPUT[;][prompt string,] list of variables

Comments:

prompt string is a request for data to be supplied during program execution.

list of variables contains the variable(s) that stores the data in the prompt string.

Each data item in the prompt string must be surrounded by double quotation marks, followed by
a semicolon or comma and the name of the variable to which it will be assigned. If more than
one variable is given, data items must be separated by commas.

The data entered is assigned to the variable list. The number of data items supplied must be the
same as the number of variables in the list.

The variable names in the list may be numeric or string variable names (including subscripted
variables). The type of each data item input must agree with the type specified by the variable
name.

Too many or too few data items, or the wrong type of values (for example, numeric instead of
string), causes the message "?Redo from start" to be printed. No assignment of input
values is made until an acceptable response is given.

A comma may be used instead of a semicolon after prompt string to suppress the question
mark. For example, the following line prints the prompt with no question mark:

INPUT "ENTER BIRTHDATE",B$

If the prompt string is preceded by a semicolon, the RETURN key pressed by the operator is
suppressed. During program execution, data on that line is displayed, and data from the next
PRINT statement is added to the line.

When an INPUT statement is encountered during program execution, the program halts, the
prompt string is displayed, and the operator types in the requested data. Strings that input to an
INPUT statement need not be surrounded  by quotation marks unless they contain commas or
leading or trailing blanks.



GW-BASIC User's Reference - 81 -

When the operator presses the RETURN key, program execution continues.

INPUT and LINE INPUT statements have built-in PRINT statements. When an INPUT
statement with a quoted string is encountered during program execution, the quoted string is
printed automatically (see the PRINT statement).

The principal difference between the INPUT and LINE INPUT statements is that LINE INPUT
accepts special characters (such as commas) within a string, without requiring double quotation
marks, while the INPUT statement requires double quotation marks.

Example 1:

To find the square of a number:

10 INPUT X
20 PRINT X "SQUARED IS" X^2
30 END
RUN
?

The operator types a number (5) in response to the question mark.

5 SQUARED IS 25
Ok

Example 2:

To find the area of a circle when the radius is known:

10 PI=3.14
20 INPUT "WHAT IS THE RADIUS";R
30 A=PI*R^2
40 PRINT "THE AREA OF THE CIRCLE IS";A
50 PRINT
60 GOTO 20
RUN
WHAT IS THE RADIUS? 7.4
THE AREA OF THE CIRCLE IS 171.9464

Note that line 20 in the above example makes use of the built-in PRINT statement contained
within INPUT.



GW-BASIC User's Reference - 82 -

INPUT# Statement
Purpose:

To read data items from a sequential file and assign them to program variables.

Syntax:

INPUT# file number, variable list

Comments:

file number is the number used when the file was opened for input.

variable list contains the variable names to be assigned to the items in the file.

The data items in the file appear just as they would if data were being typed on the keyboard in
response to an INPUT statement.

The variable type must match the type specified by the variable name.

With INPUT#, no question mark is printed, as it is with INPUT.

Numeric Values

For numeric values, leading spaces and line feeds are ignored. The first character encountered
(not a space or line feed) is assumed to be the start of a number. The number terminates on a
space, carriage return, line feed, or comma.

Strings

If GW-BASIC is scanning the sequential data file for a string, leading spaces and line feeds are
ignored.

If the first character is a double quotation mark ("), the string will consist of all characters read
between the first double quotation mark and the second.  A quoted string may not contain a
double quotation mark as a character. The second double quotation mark always terminates the
string.

If the first character of the string is not a double quotation mark, the string terminates on a
comma, carriage return, line feed, or after 255 characters have been read.

If end of the file is reached when a numeric or string item is being INPUT, the item is terminated.

INPUT# can also be used with random files.



GW-BASIC User's Reference - 83 -

INPUT$ Function
Purpose:

To return a string of x characters read from the keyboard, or from file number.

Syntax:

INPUT$(x[,[#]file number)]

Comments:

If the keyboard is used for input, no characters will appear on the screen. All control characters
(except CTRL-BREAK) are passed through. CTRL-BREAK interrupts the execution of the
INPUT$ function.

The INPUT$ function is preferred over INPUT and LINE INPUT statements for reading
communications files, because all ASCII characters may be significant in communications.
INPUT is the least desirable because input stops when a comma or carriage return is seen.
LINE INPUT terminates when a carriage return is seen.

INPUT$ allows all characters read to be assigned to a string. INPUT$ will return x characters
from the file number or keyboard.

For more information about communications, refer to Appendix F in the GW-BASIC User's
Guide.

Example 1:

The following example lists the contents of a sequential file in hexadecimal.
10 OPEN"I",1,"DATA"
20 IF EOF(1) THEN 50
30 PRINT HEX$(ASC(INPUT$(1,#1)));
40 GOTO 20
50 PRINT
60 END

Example 2:

In the following program, the program pauses, awaiting a keyboard entry of either P or S. Line
130 continues to loop back to line 100 if the input is other than P or S.

100 PRINT "TYPE P TO PROCEED OR S TO STOP"
110 X$=INPUT$(1)
120 IF X$="P" THEN 500
130 IF X$="S" THEN 700 ELSE 100



GW-BASIC User's Reference - 84 -

INSTR Function
Purpose:

To search for the first occurrence of string y$ in x$, and return the position
at which the string is found.

Syntax:

INSTR([n,]x$,y$)

Comments:

Optional offset n sets the position for starting the search. The default value for n is 1.

If n equals zero, the error message "Illegal argument in line number" is returned.

n must be within the range of 1 to 255. If n is out of this range, an "Illegal Function Call"
error is returned.

INSTR returns 0 if:

o n>LEN(x$)

o x$ is null

o y$ cannot be found

If y$ is null, INSTR returns n.

x$ and y$ may be string variables, string expressions, or string literals.

Examples:

10 X$="ABCDEBXYZ"
20 Y$="B"
30 PRINT INSTR(X$,Y$);INSTR(4,X$,Y$)
RUN
 2 6
Ok

The interpreter searches the string "ABCDFBXYZ" and finds the first occurrence of the character
B at position 2 in the string. It then starts another search at position 4 (D) and finds the second
match at position 6 (B). The last three characters are ignored, since all conditions set out in line
30 were satisfied.



GW-BASIC User's Reference - 85 -

INT Function
Purpose:

To truncate an expression to a whole number.

Syntax:

INT(x)

Comments:

Negative numbers return the next lowest number.

The FIX and CINT functions also return integer values.

Examples:

PRINT INT(98.89)
 98
Ok

PRINT INT(-12.11)
-13
Ok



GW-BASIC User's Reference - 86 -

IOCTL Statement
Purpose:

To allow GW-BASIC to send a "control data" string to a character device driver anytime after the
driver has been opened.

Syntax:

IOCTL[#]file number,string

Comments:

file number is the file number open to the device driver.

string is a valid string expression containing characters that control the device.

IOCTL commands are generally 2 to 3 characters followed by an optional alphanumeric
argument. An IOCTL string may be up to 255 bytes long, with commands within the string
separated by semicolons.

Examples:

If a user had installed a driver to replace lpt1, and that driver was able to set page length (the
number of lines to print on a page before issuing a form feed), then the following lines would
open the new lpt1 driver and set the page length to 66 lines:

OPEN "LPT1:" FOR OUTPUT AS #1
IOCTL #1,"PL66"

The following statements open lpt1 with an initial page length of 56 lines:

OPEN "\DEV\LPT1" FOR OUTPUT AS #1
IOCTL #1,"PL56"



GW-BASIC User's Reference - 87 -

IOCTL$ Function
Purpose:

To allow GW-BASIC to read a "control data" string from an open character device driver.

Syntax:

IOCTL$([#]file number)

Comments:

file number is the file number open to the device.

The IOCTL$ function is generally used to get acknowledgement that an IOCTL statement
succeeded or failed. It is also used to get device information, such as device width after an
IOCTL statement requests it.

Examples:

10 'GW is a possible command
20 'for get device width
30 OPEN "\DEV\MYLPT" AS#1
40 IOCTYL#1,"GW"
50 'Save it in WID
60 WID=VAL(IOCTL$(#1))



GW-BASIC User's Reference - 88 -

KEY Statement
Purpose:

To allow rapid entry of as many as 15 characters into a program with one keystroke by
redefining GW-BASIC special function keys.

Syntax:

KEY key number,string expression
KEY n,CHR$(hexcode)+CHR$(scan code)
KEY ON
KEY OFF
KEY LIST

Comments:

key number is the number of the key to be redefined. key number may range from 1-20.

string expression is the key assignment. Any valid string of 1 to 15 characters may be
used. If a string is longer than 15 characters, only the first 15 will be assigned. Constants must
be enclosed in double quotation marks.

scan code is the variable defining the key you want to trap. Appendix H in the GW-BASIC
User's Guide lists the scan codes for the keyboard keys.

hex code is the hexadecimal code assigned to the key shown below:

Key: Hexcode:

EXTENDED &H80

CAPS LOCK &H40

NUM LOCK &H20

ALT &H08

CTRL &H04

SHIFT &H01, &H02, &H03

Hexcodes may be added together, such as &H03, which is both shift keys.



GW-BASIC User's Reference - 89 -

Initially, the function keys are assigned the following special functions:

F1    LIST               F2   RUN↵

F3    LOAD"            F4   SAVE"

F5    CONT↵           F6   ,"LPT1:" ↵

F7    TRON↵           F8   TROFF↵

F9    KEY                F10 SCREEN 000↵

Note

↵  (arrow) means that you do not have to press RETURN after each of these keys has been
pressed.

Any one or all of the 10 keys may be redefined. When the key is pressed, the data assigned to it
will be input to the program.

KEY key number,"string expression"

Assigns the string expression to the specified key.

KEY LIST

List all 10 key values on the screen. All 15 characters of each value are displayed.

KEY ON

Displays the first six characters of the key values on the 25th line of the screen. When the
display width is set at 40, five of the 10 keys are displayed. When the width is set at 80, all 10
are displayed.

KEY OFF

Erases the key display from the 25th line, making that line available for program use. KEY OFF
does not disable the function keys.

If the value for key number is not within the range of 1 to 10, or 15 to 20, an "Illegal
function call" error occurs. The previous KEY assignment is retained.

Assigning a null string (length 0) disables the key as a function key.



GW-BASIC User's Reference - 90 -

When a function key is redefined, the INKEY$ function returns one character of the assigned
string per invocation. If the function key is disabled, INKEY$ returns a string of two characters:
the first is binary zero; the second is the key scan code.

Examples:

10 KEY 1,"MENU"+CHR$(13)

Displays a menu selected by the operator each time key 1 is pressed.

1 KEY OFF

Turns off the key display.

10 DATA KEY1,KEY2,KEY3,KEY4,KEY5
20 FOR N=1 TO 5:READ SOFTKEYS$(n)
30 KEY N,SOFTKEYS$(I)
40 NEXT N
50 KEY ON

Displays new function keys on line 25 of the screen.

20 KEY 1,""

Disables function key 1.



GW-BASIC User's Reference - 91 -

KEY(n) Statement
Purpose:

To initiate and terminate key capture in a GW-BASIC program.

Syntax:

KEY(n) ON
KEY(n) OFF
KEY(n) STOP

Comments:

n is a number from 1 to 20 that indicates which key is to be captured. Keys are numbered as
follows:

Key Number Key

1-10 Function keys F1 through F10

11 CURSOR-UP

12 CURSOR-LEFT

13 CURSOR-RIGHT

14 CURSOR-DOWN

15-20 Keys defined in the following format (see KEY statement):
 KEY n,CHR$(hexcode)+CHR$(scan code)

Execution of the KEY(n) ON statement is required to activate keystroke cature from the function
keys or cursor control keys. When the KEY(n) ON statement is activated and enabled, GW-
BASIC checks each new statement to see if the specified key is pressed. If so, GW-BASIC
performs a GOSUB to the line number specified in the ON KEY(n) statement. An ON KEY(n)
statement must precede a KEY(n) statement.

When KEY(n) OFF is executed, no key capture occurs and no keystrokes are retained.

If KEY(n) STOP is executed, no key capture occurs, but if a specified key is pressed, the
keystroke is retained so that immediate keystroke capture occurs when a KEY(n) ON is
executed.

For further information on key trapping, see the ON KEY (n) statement.



GW-BASIC User's Reference - 92 -

KILL Command
Purpose:

To delete a file from a disk.

Syntax:

KILL filename

Comments:

filename can be a program file, sequential file, or random-access data file.

KILL is used for all types of disk files, including program, random data, and sequential data
files.

Note

You must specify the filename's extension when using the KILL command. Remember that files
saved in GW-BASIC are given the default extension .BAS.

If a KILL command is given for a file that is currently open, a "File already open" error
occurs.

Examples:

The following command deletes the GW-BASIC file data, and makes the space available for
reallocation to another file:

200 KILL "DATA1.BAS"

The following command deletes the GW-BASIC file raining from the subdirectory dogs:

KILL "CATS\DOGS\RAINING.BAS"



GW-BASIC User's Reference - 93 -

LEFT$ Function
Purpose:

To return a string that comprises the left-most n characters of x$.

Syntax:

LEFT$(x$,n)

Comments:

n must be within the range of 0 to 255. If n is greater than LEN(x$), the entire string (x$) will be
returned. If n equals zero, the null string (length zero) is returned (see the MID$ and RIGHT$
substring functions).

Example:

10 A$="BASIC"
20 B$=LEFT$(A$,3)
30 PRINT B$
RUN
BAS
Ok

The left-most three letters of the string "BASIC" are printed on the screen.



GW-BASIC User's Reference - 94 -

LEN Function
Purpose:

To return the number of characters in x$.

Syntax:

LEN(x$)

Comments:

Nonprinting characters and blanks are counted.

Example:

x$ is any string expression.

10 X$="PORTLAND, OREGON"
20 PRINT LEN(X$)
16
Ok

Note that the comma and space are included in the character count of 16.



GW-BASIC User's Reference - 95 -

LET Statement
Purpose:

To assign the value of an expression to a variable.

Syntax:

[LET] variable=expression

Comments:

The word LET is optional; that is, the equal sign is sufficient when assigning an expression to a
variable name.

The LET statement is seldom used. It is included here to ensure compatibility with previous
versions of BASIC that require it.

When using LET, remember that the type of the variable and the type of the expression must
match. If they don't, a "Type mismatch" error occurs.

Example 1:

The following example lets you have downward compatibility with an older system. If this
downward compatibility is not required, use the second example, as it requires less memory.

110 LET D=12
120 LET E=12^2
130 LET F=12^4
140 LET SUM=D+E+F

Example 2:

110 D=12
120 E=12^2
130 F=12^4
140 SUM=D+E+F



GW-BASIC User's Reference - 96 -

LINE Statement
Purpose:

To draw lines and boxes on the screen.

Syntax:

LINE [(x1,y1)]-(x2,y2) [,[attribute][,B[F]][,style]]

Comments:

x1,y1 and x2,y2 specify the end points of a line.

Resolution mode is determined by the SCREEN statement.

attribute specifies color or intensity of the displayed pixel (see the COLOR
and PALETTE statements).

B (box) draws a box with the points (x1,y1) and (x2,y2) at opposite corners.

BF (filled box) draws a box (as ,B) and fills in the interior with points.

Note

If attribute is not specified, two commas must be used before B or BF.

LINE supports the additional argument style. style is a 16-bit integer mask
used when putting down pixels on the screen. This is called line-styling.

Each time LINE stores a point on the screen, it uses the current circulating
bit in style. If that bit is 0, no store will be done. If the bit is a 1, then a
normal store is done. After each point, the next bit position in style is
selected.

Since a 0 bit in style does not clear out the old contents, you may wish to
draw a background line before a styled line, in order to force a known background.

style is used for normal lines and boxes, but is illegal for filled boxes.

If the BF parameter is used with the style parameter, a "Syntax" error will
occur.

When out-of-range values are given in the LINE statement, the coordinates
that are out of range are not visible on the screen. This is called
line-clipping.

In the syntax shown here, the coordinate form STEP (x offset, y offset) is not
shown. However, this form can be used wherever a coordinate is used.



GW-BASIC User's Reference - 97 -

In a LINE statement, if the relative form is used on the second coordinate, it
is relative to the first coordinate.

After a LINE statement, the last referenced point is x2, y2.

The simplest form of LINE is the following:

LINE -(xz,yz)

This draws a line from the last point referenced to the point (xz, yz) in the
foreground color.

Examples:

LINE (0,100)-(639,100)

Draws a horizontal line which divides the screen in half from top to bottom in
SCREEN 2.

LINE (160,0)-(160,199)

Draws a vertical line which divides the screen in half from left to right in
SCREEN 1; makes a one-quarter/three-quarter division in SCREEN 2.

LINE (0,0)-(319,199)

Draws a diagonal line from the top left to lower right corner of the screen in
SCREEN 1, and  from the upper left corner to the center bottom of the screen
in SCREEN 2.

LINE (10,10)-(20,20),2

Draws a line in color 2 if SCREEN 1 is previously specified (see the COLOR
statement).

10 CLS
20 LINE -(RND*319,RND*199),RND*4
30 GOTO 20



GW-BASIC User's Reference - 98 -

Draw lines forever using random attributes.

10 FOR X=0 TO 319
20 LINE (X,0)-(X,199),X AND 1
30 NEXT

Draws an alternating pattern: line on, line off.

10 CLS
20 LINE -(RND*639,RND*199),RND*2,BF
30 GOTO 20

Draws lines all over the screen.

LINE (0,0)-(100,175),,B

Draws a square box in the upper left corner of the screen.

LINE (0,0)-(100,175),,BF

Draws the same box and fills it in.

LINE (0,0)-(100,175),2,BF

Draws the same filled box in magenta in SCREEN 1.

LINE (0,0)-(100,350),,B

Draws the same box if SCREEN 2 is specified.

400 SCREEN 1
410 LINE(160,100)-(160,199),,,&HCCCC

Draws a vertical dotted line down the center of the screen in SCREEN 1.

220 SCREEN 2
230 LINE(300,100)-(400,50),,B,&HAAAA

Draws a rectangle with a dotted line in SCREEN 2.

LINE (0,0)-(160,100),3,,&HFF00

Draws a dotted line from the upper left corner to the screen center.



GW-BASIC User's Reference - 99 -

LINE INPUT Statement
Purpose:

To input an entire line (up to 255 characters) from the keyboard into a string variable, ignoring
delimiters.

Syntax:

LINE INPUT [;][prompt string;]string variable

Comments:

prompt string is a string literal, displayed on the screen, that allows user input during
program execution.

A question mark is not printed unless it is part of prompt string.

string variable accepts all input from the end of the prompt to the carriage return. Trailing
blanks are ignored.

LINE INPUT is almost the same as the INPUT statement, except that it accepts special
characters (such as commas) in operator input during program execution.

If a line-feed/carriage return sequence (this order only) is encountered, both characters are input
and echoed. Data input continues.

If LINE INPUT is immediately followed by a semicolon, pressing the RETURN key will not move
the cursor to the next line.

A LINE INPUT may be escaped by typing CTRL-BREAK. GW-BASIC returns to command level
and displays Ok.

Typing CONT resumes execution at the LINE INPUT line.

Example:

100 LINE INPUT A$

Program execution pauses at line 100, and all keyboard characters typed thereafter are input to
string A$ until RETURN, CTRL-M, CTRL-C, or CTRL-BREAK is entered.



GW-BASIC User's Reference - 100 -

LINE INPUT# Statement
Purpose:

To read an entire line (up to 255 characters), without delimiters, from a sequential disk file to a
string variable.

Syntax:

LINE INPUT# file number, string variable

Comments:

file number is the number under which the file was opened.

string variable is the variable name to which the line will be assigned.

LINE INPUT# reads all characters in the sequential file up to a carriage return. If a line
feed/carriage return sequence (this order only) is encountered, it is input.

LINE INPUT# is especially useful if each line of a data file has been broken into fields, or if a
BASIC program saved in ASCII mode is being read as data by another program.

Examples:

10 OPEN "O",1,"INFO"
20 LINE INPUT "CUSTOMER INFORMATION?";C$
30 PRINT#1, C$
40 CLOSE 1
50 OPEN "I",1,"INFO"
60 LINE INPUT#1, C$
70 PRINT C$
80 CLOSE 1
RUN
CUSTOMER INFORMATION?

If the operator enters

LINDA JONES 234,4 MEMPHIS

then the program continues with the following:

LINDA JONES 234,4 MEMPHIS
Ok



GW-BASIC User's Reference - 101 -

LIST Command
Purpose:

To list all or part of a program to the screen, line printer, or file.

Syntax:

LIST [line number][-line number][,filename]
LIST [line number-][,filename]

Comments:

line number is a valid line number within the range of 0 to 65529.

If filename is omitted, the specified lines are listed to the screen.

Use the hyphen to specify a line range. If the line range is omitted, the entire program is listed.
Line number- lists that line and all higher numbered lines.
-line number lists lines from the beginning of the program through the specified line.

The period (.) can replace either line number to indicate the current line.

Any listing may be interrupted by pressing CTRL-BREAK.

Examples:

LIST

Lists all lines in the program.

LIST -20

Lists lines 1 through 20.

LIST 10-20

Lists lines 10 through 20.

LIST 20-

Lists lines 20 through the end of the program.



GW-BASIC User's Reference - 102 -

LLIST Command
Purpose:

To list all or part of the program currently in memory to the line printer.

Syntax:

LLIST [line number][-line number]
LLIST [line number-]

Comments:

GW-BASIC always returns to command level after a LLIST is executed. The line range options
for LLIST are the same as for LIST.

Examples:

See the examples in the LIST statement.



GW-BASIC User's Reference - 103 -

LOAD Command
Purpose:

To load a file from diskette into memory.

Syntax:

LOAD filename[,r]

Comments:

filename is the filename used when the file was saved. If the extension was omitted, .BAS will
be used.

LOAD closes all open files and deletes all variables and program lines currently residing in
memory before it loads the designated program.

If the r option is used with LOAD, the program runs after it is loaded, and all open data files are
kept open.

LOAD with the r option lets you chain several programs (or segments of the same program).
Information can be passed between the programs using the disk data files.

Examples:

LOAD "STRTRK",R

Loads the file strtrk.bas and runs it, retaining all open files and variables from a previous
program intact.



GW-BASIC User's Reference - 104 -

LOC Function
Purpose:

To return the current position in the file.

Syntax:

LOC(file number)

Comments:

file number is the file number used when the file was opened.

When transmitting or receiving a file through a communication port, LOC returns the number of
characters in the input buffer waiting to be read. The default size for the input buffer is 256
characters, but can be changed with the /c: option on the GW-BASIC command line. If there
are more than 255 characters in the buffer, LOC returns 255. Since a string is limited to 255
characters, this practical limit alleviates the need to test for string size before reading data into it.
If fewer than 255 characters remain in the buffer, then LOC returns the actual count.

With random disk files, LOC returns the record number just read from, or written to, with a GET or
PUT statement.

With sequential files, LOC returns the number of 128-byte blocks read from, or written to, the file
since it was opened. When the sequential file is opened for input, GW-BASIC initially reads the
first sector of the file. In this case, the LOC function returns the character 1 before any input is
allowed.

If the file was opened but no disk input/output was performed, LOC returns a zero.

Examples:

200 IF LOC(1)>50 THEN STOP

The program stops after 51 records are read or written.



GW-BASIC User's Reference - 105 -

LOCATE Statement
Purpose:

To move the cursor to the specified position on the active screen. Optional parameters cause
the cursor to blink on and off, and define the start and stop raster lines for the cursor. A raster
line is the vertical or horizontal distance between two adjacent, addressable points on your
screen.

Syntax:

LOCATE [row][,[col][,[cursor][,[start] [,stop]]]]

Comments:

row is the screen line number, a numeric expression within the range of 1 to 25.

col is the screen column number, a numeric expression within the range of 1 to 40, or 1 to 80,
depending upon screen width.

cursor is a boolean value indicating whether the cursor is visible; zero is off, nonzero is on.

start is the cursor start scan line, a numeric expression within the range of 0 to 31.

stop is the cursor stop scan line, a numeric expression within the range of 0 to 31.

When the cursor is moved to the specified position, subsequent PRINT statements begin placing
characters at this location. Optionally, the LOCATE statement may be used to start the cursor
blinking on or off, or change the size of the blinking cursor.

Any values entered outside of these ranges results in "Illegal function call" errors.
Previous values are retained.

As you set up the parameters for the LOCATE statement, you may find that you do not wish to
change one or more of the existing specifications. To omit a parameter from this LOCATE
statement, insert a comma for the parameter that is being skipped. If the omitted parameter(s)
occurs at the end of the statement, you do not have to type the comma.

If the start scan line parameter is given and the stop scan line parameter is omitted, stop
assumes the start value.



GW-BASIC User's Reference - 106 -

Examples:

10 LOCATE 1,1

Moves cursor to the home position in the upper-left corner.

20 LOCATE ,,1

Makes the cursor visible. Its position remains unchanged. Notice that the first  two parameters
are not used. A comma has been inserted for each omitted parameter.

30 LOCATE ,,,7

Cursor position and visibility remain unchanged. Sets the cursor to appear at the bottom of the
character starting and ending on scan line 7.

40 LOCATE 5,1,1,0,7

Moves the cursor to line 5, column 1, and turns the cursor on. The cursor covers an entire
character cell, starting at scan line 0 and ending on scan line 7.



GW-BASIC User's Reference - 107 -

LOCK Statement
Purpose:

To restrict the access to all or part of a file that has been opened by another process. This is
used in a multi-device environment, often referred to as a network or network environment.

Syntax:

LOCK [#]n [,[record number] [TO record number]]

Comments:

n is the number that was assigned to the file as it was originally numbered in the program.

record number is the number of the individual record that is to be locked. Or, if a range of
records are to be locked, record number designates the beginning and ending record of the
specified range.

The range of legal record numbers is 1 to 2 32 -1. The limit on record size is 32767 bytes.

The record range specified must be from lower to (the same or) higher record numbers.

If a starting record number is not specified, the record number 1 is assumed.

If an ending record number is not specified, then only the specified record is locked.

The following are examples of legal LOCK statements:

LOCK #n locks the entire file n

LOCK #n, X locks record X only

LOCK #n,TO Y locks records 1 through Y

LOCK #n, X TO Y locks records X through Y

With a random-access file, the entire opened file, or a range of records within an opened file,
may be locked, thus denying access to those records to any other process which has also
opened the file.

With a sequential access file that has been opened for input or output, the entire file is locked,
regardless of any record range specified. This is not  considered an error. The specification of a
range in the LOCK statement regarding the sequential file will simply be disregarded.

The LOCK statement should be executed on a file or record range within a file before attempting
to read or write to that file.

The locked file or record range should be unlocked before the file is closed. Failure to execute
the UNLOCK statement can jeopardize future access to that file in a network environment.



GW-BASIC User's Reference - 108 -

It is expected that the time in which files or regions within files are locked will be short, and thus
the suggested usage of the LOCK statement is within short-term paired LOCK/UNLOCK
statements.

Examples:

The following sequence demonstrates how the LOCK/UNLOCK statements should be used:

LOCK #1, 1 TO 4
LOCK #1, 5 TO 8
UNLOCK #1, 1 TO 4
UNLOCK #1, 5 TO 8

The following example is illegal:

LOCK #1, 1 TO 4
LOCK #1, 5 TO 8
UNLOCK #1, 1 TO 8



GW-BASIC User's Reference - 109 -

LOF Function
Purpose:

To return the length (number of bytes) allocated to the file.

Syntax:

LOF(file number)

Comments:

file number is the number of the file that the file was opened under.

With communications files, LOF returns the amount of free space in the input buffers.

Examples:

The following sequence gets the last record of the random-access file file.big, and assumes that
the file was created with a default record length of 128 bytes:

10 OPEN "R",1,"FILE.BIG"
20 GET #1,LOF(1)/128

LOG Function
Purpose:

To return the natural logarithm of x.

Syntax:

LOG(x)

Comments:

x must be a number greater than zero.

LOG(x) is calculated in single precision, unless the /d switch is used when GW-BASIC is
executed.

Examples:

PRINT LOG(2)
.6931471

PRINT LOG(1)
0



GW-BASIC User's Reference - 110 -

LPOS Function
Purpose:

To return the current position of the lineprinter print head within the line printer buffer.

Syntax:

LPOS(x)

Comments:

LPOS does not necessarily give the physical position of the print head.

x is a dummy argument.

If the printer has less than the 132 characters-per-line capability, it may issue internal line feeds
and not inform the computer internal line printer buffer. If this has happened, the value returned
by LPOS(x) may be incorrect. LPOS(x) simply counts the number of printable characters since
the last line feed was issued.

Examples:

The following line causes a carriage return after the 60th character is printed on a line:

100 IF LPOS(X)>60 THEN LPRINT CHR$(13)



GW-BASIC User's Reference - 111 -

LPRINT and LPRINT USING Statements
Purpose:

To print data at the line printer.

Syntax:

LPRINT [list of expressions][;]
LPRINT USING string exp; list of expressions[;]

Comments:

list of expressions consists of the string or numeric expression separated by semicolons.

string expressions is a string literal or variable consisting of special formatting characters.
The formatting characters determine the field and the format of printed strings or numbers.

These statements are the same as PRINT and PRINT USING, except that output goes to the
line printer. For more information about string and numeric fields and the variables used in them,
see the PRINT and PRINT USING statements.

The LPRINT and LPRINT USING statements assume that your printer is an 80-character-wide
printer.

To reset the number of characters that you can print across the printed page (assuming that
your printer is wider than 80 characters), see the WIDTH statement.



GW-BASIC User's Reference - 112 -

LSET and RSET Statements
Purpose:

To move data from memory to a random-file buffer and left- or right-justify it in preparation for a
PUT statement.

Syntax:

LSET string variable=string expression
RSET string variable=string expression

Comments:

If string expression requires fewer bytes than were fielded to string variable, LSET left-justifies
the string in the field, and RSET right-justifies the string (spaces are used to pad the extra
positions).

If the string is too long for the field, characters are dropped from the right.

To convert numeric values to strings before the LSET or RSET statement is used, see the MKI$,
MKS$, and MKD$ functions.

LSET or RSET may also be used with a nonfielded string variable to left-justify or right-justify a
string in a given field.

Examples:

110 A$=SPACE$(20)
120 RSET A$=N$

These two statements right-justify the string N$ in a 20-character field. This can be valuable for
formatting printed output.



GW-BASIC User's Reference - 113 -

MERGE Command
Purpose:

To merge the lines from an ASCII program file into the program already in memory.

Syntax:

MERGE filename

Comments:

filename is a valid string expression containing the filename. If no extension is specified, then
GW-BASIC assumes an extension of .BAS.

The diskette is searched for the named file. If found, the program lines on the diskette are
merged with the lines in memory. After the MERGE command, the merged program resides in
memory, and GW-BASIC returns to the direct mode.

If the program being merged was not saved in ASCII code with the a option to the SAVE
command, a "Bad file mode" error is issued. The program in memory remains unchanged.

If any line numbers in the file have the same number as lines in the program in memory, the
lines from the file replace the corresponding lines in memory.

Examples:

MERGE "SUBRTN"

Merges the file subrtn.bas with the program currently in memory, provided subrtn was previously
saved with the a option. If some of the program lines are the same as those in the subrtn.bas file
being merged, then the original program lines are replaced by the lines from subrtn.bas.



GW-BASIC User's Reference - 114 -

MID$ Function
Purpose:

To return a string of m characters from v$ beginning with the nth character.

Syntax:

MID$(x$,n[,m])

Comments:

n must be within the range of 1 to 255.

m must be within the range of 0 to 255.

If m is omitted, or if there are fewer than m characters to the right of n, all rightmost characters
beginning with n are returned.

If n > LEN(x$), MID$ function returns a null string.

If m equals 0, the MID$ function returns a null string.

If either n or m is out of range, an "Illegal function call error" is returned.

For more information and examples, see the LEFT$ and RIGHT$ functions.

Examples:

10 A$="GOOD"
20 B$="MORNING EVENING AFTERNOON"
30 PRINT A$;MID$(B$,8,8)
RUN
GOOD EVENING
Ok

Line 30 concatenates (joins) the A$ string to another string with a length of eight characters,
beginning at position 8 within the B$ string.



GW-BASIC User's Reference - 115 -

MID$ Statement
Purpose:

To replace a portion of one string with another string.

Syntax:

MID$(stringexp1,n[,m])=stringexp2

Comments:

Both n and m are integer expressions.

stringexp1 and stringexp2 are string expressions.

The characters in stringexp1, beginning at position n, are replaced by the characters in
stringexp2.

The optional m refers to the number of characters from stringexp2 that are used in the
replacement. If m is omitted, all of stringexp2 is used.

Whether m is omitted or included, the replacement of characters never goes beyond the original
length of stringexp1.

Examples:

10 A$="KANSAS CITY, MO"
20 MID$(A$,14)="KS"
30 PRINT A$
RUN
KANSAS CITY, KS
Ok

Line 20 overwrites "MO" in the A$ string with "KS".



GW-BASIC User's Reference - 116 -

MKDIR Command
Purpose:

To create a subdirectory.

Syntax:

MKDIR pathname

Comments:

pathname is a string expression, not exceeding 63 characters, identifying the subdirectory to be
created.

Examples:

MKDIR "C:SALES\JOHN"

Creates the subdirectory john within the directory of sales.



GW-BASIC User's Reference - 117 -

MKI$, MKS$, MKD$ Functions
Purpose:

To convert numeric values to string values.

Syntax:

MKI$(integer expression)
MKS$(single-precision expression)
MKD$(double-precision expression)

Comments:

MKI$ converts an integer to a 2-byte string.

MKS$ converts a single-precision number to a 4-byte string.

MKD$ converts a double-precision number to an 8-byte string.

Any numeric value placed in a random file buffer with a LSET or a RSET statement must be
converted to a string (see CVI, CVS, CVD, for the complementary functions).

These functions differ from STR$ because they change the interpretations of the bytes, not the
bytes themselves.

Examples:

90 AMT=(K+T)
100 FIELD #1,8 AS D$,20 AS N$
110 LSET D$=MKS$(AMT)
120 LSET N$=A$
130 PUT #1



GW-BASIC User's Reference - 118 -

NAME Command
Purpose:

To change the name of a disk file.

Syntax:

NAME old filename AS new filename

Comments:

old filename must exist and new filename must not exist; otherwise, an error results.

After a NAME command, the file exists on the same diskette, in the same disk location, with the
new name.

Examples:

NAME "ACCTS" AS "LEDGER"
Ok

The file formerly named accts will now be named ledger. The file content and physical location
on the diskette is unchanged.



GW-BASIC User's Reference - 119 -

NEW Command
Purpose:

To delete the program currently in memory and clear all variables.

Syntax:

NEW

Comments:

NEW is entered at command level to clear memory before entering a new program. GW-BASIC
always returns to command level after a NEW is executed.

Examples:

NEW
OK

or

980 PRINT "Do You Wish To Quit (Y/N)
990 ANS$=INKEY$: IF ANS$=""THEN 990
1000 IF ANS$="Y" THEN NEW
1010 IF ANS$="N" THEN 980
1020 GOTO 990



GW-BASIC User's Reference - 120 -

OCT$ Function
Purpose:

To convert a decimal value to an octal value.

Syntax:

OCT$(x)

Comments:

x is rounded to an integer before OCT$(x) is evaluated.

This statement converts a decimal value within the range of -32768 to +65535 to an octal string
expression.

Octal numbers are numbers to the base 8 rather than base 10 (decimal numbers).

See the HEX$ function for hexadecimal conversion.

Examples:

10 PRINT OCT$(18)
RUN
22
Ok

Decimal 18 equals octal 22.



GW-BASIC User's Reference - 121 -

ON COM(n), ON KEY(n), ON PEN, ON PLAY(n), ON
STRIG(n), and ON TIMER(n) Statements

Purpose:

To create an event trap line number for a specified event (such as communications, pressing
function or cursor control keys, using the light pen, or using joysticks).

Syntax:

ON event specifier GOSUB line number

Comments:

The syntax shown sets up an event trap line number for the specified event. A line number of
0 disables trapping for this event.

Once trap line numbers have been set, event trapping itself can be controlled with the following
syntax lines:

event specifier ON
When an event is ON, and a nonzero line number is specified for the trap,
then every time BASIC starts a new statement, it checks to see if the
specified event has occurred. If it has, BASIC performs a GOSUB to the line
specified in the ON statement.

event specifier OFF
When an event is OFF, no trapping occurs and the event is not
remembered, even if it occurs.

event specifier STOP
When an event is stopped, no trapping can occur, but if the event
happens, it is remembered so an immediate trap occurs when an event
specifier ON is executed.

When a trap is made for a particular event, the trap automatically causes a stop on that event,
so recursive traps can never take place.

The return from the trap routine automatically does an ON unless an explicit OFF has been
performed inside the trap routine.

When an error trap takes place, this automatically disables all trapping.

Trapping will never take place when BASIC is not executing a program.



GW-BASIC User's Reference - 122 -

The following are valid values for event specifier:

COM(n) n is the number of the COM channel (1 or 2).

KEY(n) n is a function key number 1-20. 1 through 10 are the function keys F1
through F10. 11 through 14 are the cursor control keys as follows:

11= Cursor Up                                        13= Cursor Right

12= Cursor Left                                       14= Cursor Down

15-20 are user-defined keys.

PEN Since there is only one pen, no number is given.

PLAY(n) n is an integer expression in the range of 1-32. Values outside this range
result in "Illegal function call" errors.

STRIG(n) n is 0, 2, 4 or 6. (0=trigger A1; 4=trigger A2; 2=trigger B1; 6=trigger B2).

TIMER(n) n is a numeric expression within the range of 1 to 86,400. A value outside
of this range results in an "Illegal function call" error.

RETURN This optional form of RETURN is primarily intended for use with
line number event trapping. The event-trapping routine may want to go back into the

GW-BASIC program at a fixed line number while still eliminating the
GOSUB entry that the trap created.

Use of the nonlocal RETURN must be done with care. Any other GOSUB,
WHILE, or FOR that was active at the time of the trap remains active.

If the trap comes out of a subroutine, any attempt to continue loops
outside the subroutine results in a "NEXT without FOR" error.



GW-BASIC User's Reference - 123 -

Special Notes About Each Type of Trap

COM Trapping:

Typically, the COM trap routine will read an entire message from the COM port before returning.

It is recommended that you not use the COM trap for single character messages, since at high
baud rates the overhead of trapping and reading for each individual character may allow the
interrupt buffer for COM to overflow.

KEY Trapping:

Trappable keys 15 to 20 are defined by the following statement:

KEY(n),CHR$[hex code]+CHR$[scan code]

n is an integer expression within the range of 15 to 20 defining the key to be trapped.

hex code is the mask for the latched key: (CAPS LOCK, NUM LOCK, ALT, CTRL, LEFT
SHIFT, RIGHT SHIFT)

scan code is the number identifying one of the 83 keys to trap. Refer to Appendix H in the GW-
BASIC User's Guide for key scan codes.

The appropriate bit in hex code must be set in order to trap a key that is shifted, control-shifted,
or alt-shifted. hex code values are as follows:

Mask Hexcode Indicates that

EXTENDED &H80 Key is extended
CAPS LOCK &H40 CAPS LOCK is active
NUM LOCK &H20 NUM LOCK is active
ALT &H08 The ALT key is pressed
CTRL &H04 The CTRL key is pressed
LEFT SHIFT &H02 The left SHIFT key is pressed
RIGHT SHIFT &H01 The right SHIFT key is pressed

For trapping shifted keys, you may use the value &H01, &H02, or &H03. The left and right
SHIFT keys are coupled when &H03 is used.

Refer to the KEY(n) statement for more information.

No type of trapping is activated when GW-BASIC is in direct mode. Function keys resume their
standard expansion meaning during input.

A key that causes a trap is not available for examination with the INPUT or INKEY$ statement,
so the trap routine for each key must be different if a different function is desired.

If CTRL-PRTSC is trapped, the line printer echo toggle is processed first. Defining CTRL-
PRTSC as a key trap does not prevent characters from being echoed to the printer if CTRL-
PRTSC is pressed.



GW-BASIC User's Reference - 124 -

Function keys 1 through 14 are predefined. Therefore, setting scan codes 59-68, 72, 75, 77, or
80 has no effect.

PLAY(n) Trapping

A PLAY event trap is issued only when playing background music (PLAY"MB..). PLAY event
music traps are not issued when running in MUSIC foreground (default case, or PLAY"MF..).

Choose conservative values for n. An ON PLAY(32).. statement will cause event traps so often
that there will be little time to execute the rest of your program.

The ON PLAY(n) statement causes an event trap when the background music queue goes from
n to n-1 notes.

STRIG Trapping

Using STRIG(n) ON activates the interrupt routine that checks the trigger status. Downstrokes
that cause trapping will not set STRIG(0), STRIG(2), STRIG(4), or STRIG(6) functions.

TIMER(n) Trapping

An ON TIMER(n) event trapping statement is used with applications needing an internal timer.
The trap occurs when n seconds have elapsed since the
TIMER ON statement.

Example 1:

This is a very simple terminal program.

10 REM "ON COM(n)" EXAMPLE
20 OPEN "COM1:9600,O,7" AS #1
30 ON COM(1) GOSUB 80
40 COM(1) ON
50 REM TRANSMIT CHARACTERS FROM KEYBOARD
60 A$=INKEY$:IF A$=""THEN 50
70 PRINT #1,A$;:GOTO 50
80 REM DISPLAY RECEIVE CHARACTERS
90 ALL=LOC(1):IF ALL<1 THEN RETURN
100 B$=INPUT$(ALL,#1):PRINT B$;:RETURN



GW-BASIC User's Reference - 125 -

Example 2:

Prevents a CTRL-BREAK or system reset during a program.

10 KEY 15,CHR$(4)+CHR$(70) REM Trap ^BREAK
20 KEY 16,CHR$(12)+CHR$(83) REM Trap system reset
30 ON KEY(15) GOSUB 1000
40 ON KEY(16) GOSUB 2000
50 KEY(15) ON
60 KEY(16) ON
. . .
1000 PRINT "I'm sorry, I can't let you do that"
1010 RETURN
2000 ATTEMPS=ATTEMPS+1
2010 ON ATTEMPS GOTO 2100,2200,2300,2400,2500
2100 PRINT "Mary had a little lamb":RETURN
2200 PRINT "Its fleece was white as snow":RETURN
2300 PRINT "And everywhere that Mary went":RETURN
2400 PRINT "The lamb was sure to go":RETURN
2500 KEY(16) OFF REM If they hit us once more...
2510 RETURN REM then BASIC dies...

Example 3:

Displays the time of day on line 1 every minute.

10 ON TIMER(60) GOSUB 10000
20 TIMER ON
10000 OLDROW=CSRLIN REM Saves the current row
10010 OLDCOL=POS(0) REM Saves the current column
10020 LOCATE 1,1:PRINT TIME$
10030 LOCATE OLDROW,OLDCOL REM Restores row and column
10040 RETURN



GW-BASIC User's Reference - 126 -

ON ERROR GOTO Statement
Purpose:

To enable error trapping and specify the first line of the error-handling subroutine.

Syntax:

ON ERROR GOTO line number

Comments:

Once error trapping has been enabled, all errors detected by GW-BASIC, including direct mode
errors, (for example, syntax errors) cause GW-BASIC to branch to the line in the program which
begins the specified error-handling subroutine.

GW-BASIC branches to the line specified by the ON ERROR statement until a RESUME statement
is found.
If line number does not exist, an "Undefined line" error results.

To disable error trapping, execute the following statement:

ON ERROR GOTO 0

Subsequent errors print an error message and halt execution.

An ON ERROR GOTO 0 statement in an error-trapping subroutine causes GW-BASIC to stop
and print the error message for the error that caused the trap. It is recommended that all error-
trapping subroutines execute an ON ERROR GOTO 0 if an error is encountered for which there is
no recovery action.

If an error occurs during execution of an error-handling subroutine, the GW-BASIC error
message is printed and execution terminated. Error trapping does not occur within the error-
handling subroutine.

Examples:

10 ON ERROR GOTO 1000
...
1000 A=ERR:B=ERL
1010 PRINT A,B
1020 RESUME NEXT

Line 1010 prints the type and location of the error on the screen (see the ERR and ERL
variables).

Line 1020 causes program execution to continue with the line following the error.



GW-BASIC User's Reference - 127 -

ON ... GOSUB and ON ... GOTO Statements
Purpose:

To branch to one of several specified line numbers, depending on the value returned when an
expression is evaluated.

Syntax:

ON expression GOTO line numbers
ON expression GOSUB line numbers

Comments:

In the ON ... GOTO statement, the value of expression determines which line number in the
list will be used for branching. For example, if the value is 3, the third line number in the list will
be destination of the branch. If the value is a noninteger, the fractional portion is rounded.

In the ON ... GOSUB statement, each line number in the list must be the first line number of a
subroutine.

If the value of expression is zero or greater than the number of items in the list (but less than
or equal to 255), GW-BASIC continues with the next executable statement.

If the value of expression is negative, or greater than 255, an "Illegal function call"
error occurs.

Examples:

100 IF R<1 or R>4 then print "ERROR":END

If the integer value of R is less than 1, or greater than 4, program execution ends.

200 ON R GOTO 150,300,320,390

If R=1, the program goes to line 150.

If R=2, the program branches to line 300 and continues from there. If R=3, the branch will be to
line 320, and so on.



GW-BASIC User's Reference - 128 -

OPEN Statement
Purpose:

To establish input/output (I/O) to a file or device.

Syntax:

OPEN mode,[#]file number,filename[,reclen]

OPEN filename [FOR mode][ACCESS access][lock] AS ...
    ... [#]file number [LEN=reclen]

Comments:

filename is the name of the file.

mode (first syntax) is a string expression with one of the following characters:

Expression Specifies

O Sequential output mode

I Sequential input mode

R Random input/output mode

A Position to end of file

mode (second syntax) determines the initial positioning within the file, and the action to be taken
if the file does not exist. If the FOR mode clause is omitted, the initial position is at the beginning
of the file. If the file is not found, one is created. This is the random I/O mode. That is, records
may be read or written at any position within the file. The valid modes and actions taken are as
follows:

INPUT Position to the beginning of the file. A "File not found"
error is given if the file does not exist.

OUTPUT Position to the beginning of the file. If the file does not
exist, one is created.

APPEND Position to the end of the file. If the file does not exist,
one is created.

RANDOM Specifies random input or output mode.

mode must be a string constant. Do not enclose mode in double quotation marks.
access can be one of the following:

READ



GW-BASIC User's Reference - 129 -

WRITE
READ WRITE

file number is a number between 1 and the maximum number of files allowed.
The number associates an I/O buffer with a disk file or device. This
association exists until a CLOSE or CLOSE file number statement is executed.

reclen is an integer expression within the range of 1-32767 that sets the
record length to be used for random files. If omitted, the record length
defaults to 128-byte records.

When reclen is used for sequential files, the default is 128 bytes, and reclen
cannot exceed the value specified by the /s switch.

A disk file must be opened before any disk I/O operation can be performed on
that file. OPEN allocates a buffer for I/O to the file and determines the mode
of access that is used with the buffer.

More than one file can be opened for input or random access at one time with
different file numbers. For example, the following statements are allowed:

OPEN "B:TEMP" FOR INPUT AS #1
OPEN "B:TEMP" FOR INPUT AS #2

However, a file may be opened only once for output or appending. For example,
the following statements are illegal:

OPEN "TEMP" FOR OUTPUT AS #1
OPEN "TEMP" FOR OUTPUT AS #2

Note

Be sure to close all files before removing diskettes from the disk drives
(see CLOSE and RESET).



GW-BASIC User's Reference - 130 -

A device may be one of the following:

A:,B:,C: Disk Drive

KYBD: Keyboard (input only)

SCRN: Screen (output only)

LPT1: Line Printer 1

LPT2: Line Printer 2

LPT3: Line Printer 3

COM1: RS-232 Communications 1

COM2: RS-232 Communications 2

For each device, the following OPEN modes are allowed:

KYBD: Input Only

SCRN: Output Only

LPT1: Output Only

LPT2: Output Only

LPT3: Output Only

COM1: Input, Output, or Random Only

COM2: Input, Output, or Random Only

Disk files allow all modes.

When a disk file is opened for APPEND, the position is initially at the end of
the file, and the record number is set to the last record of the file
(LOF(x)/128). PRINT, WRITE, or PUT then extends the file. The program may
position elsewhere in the file with a GET statement. If this is done, the mode
is changed to random and the position moves to the record indicated.

Once the position is moved from the end of the file, additional records may be
appended to the file by executing a GET #x, LOF(x)/reclen statement. This
positions the file pointer at the end of the file in preparation for appending.

Any values entered outside of the ranges given result in "Illegal function
call" errors. The files are not opened.

If the file is opened as INPUT, attempts to write to the file result in "Bad
file mode" errors.



GW-BASIC User's Reference - 131 -

If the file is opened as OUTPUT, attempts to read the file result in "Bad file
mode" errors.

Opening a file for OUTPUT or APPEND fails, if the file is already open in any
mode.

Since it is possible to reference the same file in a subdirectory via different
paths, it is nearly impossible for GW-BASIC to know that it is the same file
simply by looking at the path. For this reason, GW-BASIC does not let you open
the file for OUTPUT or APPEND if it is on the same disk, even if the path is
different. For example if mary is your working directory, the following
statements all refer to the same file:

OPEN "REPORT"
OPEN "\SALES\MARY\REPORT"
OPEN "..\MARY\REPORT"
OPEN "..\..\MARY\REPORT"

At any one time, it is possible to have a particular diskette filename open
under more than one file number. Each file number has a different buffer, so
several records from the same file may be kept in memory for quick access. This
allows different modes to be used for different purposes; or, for program
clarity, different file numbers to be used for different modes of access.

If the LEN=reclen option is used, reclen may not exceed the value set by the
/s:reclen switch option in the command line.

In a network environment, the use of the OPEN statement is based upon two
different sets of circumstances:

o Devices may be shared on a network for specific purposes only, so that
OPEN statements may be restricted to specific modes among those
which might be requested, such as: INPUT, OUTPUT, APPEND, and
default (Random).

o Files may be restricted by the implementation of an OPEN statement
which allows a process to specify an access to the successfully opened
file. The access determines a guaranteed exclusivity range on that file
by the process while the OPEN statement is in effect.



GW-BASIC User's Reference - 132 -

lock can be one of the following:

SHARED "deny none" mode. No restrictions are placed on the read/write accessibility of the
the file to another process, except that the default mode is not allowed by any of
the modes including SHARED.

LOCK READ "deny read" mode. Once a file is opened with the
LOCK READ access, no other process is granted read-access to that file. An
attempt to open a file with this access will be unsuccessful, if the file is currently
open in default mode or with a read access.

LOCK WRITE "deny write" mode. A file successfully opened with LOCK WRITE access may not
be opened for a write access by another process. An attempt to open a file with
this access will be unsuccessful if the file has been opened in default mode, or
with a write access by another process.

LOCK READ "deny all" or "exclusive" mode. If a file is successfully WRITE  opened with this
access, the process has exclusive access to the file. A file that is currently open in
this mode cannot be opened again in any mode by any process.

default "compatibility" mode, in which the compatibility with other BASICs is understood.
No access is specified. The file may be opened any number of times by a
process, provided that the file is not currently opened by another process. Other
processes are denied access to the file while it is open under default access.
Therefore, it is functionally exclusive.

When an attempt is made to open a file that has been previously accessed by another process,
the error "Permission Denied" will result. An example of a situation generating this error is
when a process attempts to OPEN SHARED on a file that is already OPEN LOCK READ WRITE
by another process.

If an OPEN statement fails because the mode is incompatible with networkinstalled sharing
access to a device, the error generated is "Path/File Access Error." An example of this is
when a process is attempting to OPEN a file for output on a directory that has been shared for
read only.

For more information about using files in a networking environment, see the LOCK and UNLOCK
statements.

Examples:

10 OPEN "I",2,"INVEN"

Opens file 2, inven, for sequential input.



GW-BASIC User's Reference - 133 -

OPEN "COM(n) Statement
Purpose:

To allocate a buffer to support RS-232 asynchronous communications with other
computers and peripheral devices in the same manner as OPEN for disk files.

Syntax:

OPEN "COM[n]:[speed][,parity][,data] [,stop][,RS][,CS[n]][,DS[n]]
[,CD[n]][,LF] [,PE]" AS [#]filenum [LEN=number]

Comments:

COM[n] is a valid communications device: com1: or com2:.

speed is a literal integer specifying the transmit/receive baud rate.

Valid speeds are as follows:

75, 110, 150, 300, 600, 1200, 1800, 2400, 4800, and 9600. The default is 300
bps.

parity is a one-character literal specifying the parity for transmitting and
receiving.

Valid characters specifying parity are as follows:

S (=SPACE) Parity bit always transmitted and received as space (0 bit).

M (=MARK) Parity bit always transmitted and received as mark (1 bit).

O (=ODD) Odd transmit parity; odd receive parity checking.
Default is even.

E (=EVEN) Even transmit parity; even receive parity checking.
Even is default.

N (=NONE) No transmit parity. No receive parity checking.

data is a literal integer indicating number of transmit/receive data bits.

Valid values for the number of data bits are 4, 5, 6, 7, or 8, the default is 7 bits.

Note

Four data bits with no parity is illegal; eight data bits with any parity
is illegal.

stop is a literal integer expression returning a valid file number.



GW-BASIC User's Reference - 134 -

Valid values for number of stop bits are 1 and 2. If omitted, 75 and 110 bps transmit two stop
bits. All others transmit one stop bit.

filenum is a number between 1 and the maximum number of files allowed. A communications
device may be opened to only one file number at a time.

The filenum is associated with the file for as long as the file is open, and is used to refer other
COM I/O statements to the file.

Any coding errors within the filename string result in "Bad file name" errors. An indication as
to which parameters are in error is not given.

number is the maximum number of bytes which can be read from the communications buffer
when using GET or PUT default of 128 bytes.

A "Device timeout" error occurs if "data set ready" (DSR) is not detected.

The RS, CS, DS, CD, LF, and PE options affect the line signals as follows:

Option Function

RS suppresses RTS (request to send)

CS[n] controls CTS (clear to send)

DS[n] controls DSR (data set ready)

CD[n] controls CD (carrier detect)

LF sends a line feed at each return

PE enables parity checking

n is the number of milliseconds to wait (0-65535) for that signal before a device timeout error
occurs. Defaults are: CS1000, DS1000, and CD0. If RS was specified then CS0 is the default. If
n is omitted, then timeout is set to 0.

See Appendix F in the GW-BASIC User's Guide for more information about communications.



GW-BASIC User's Reference - 135 -

Examples:

In the following, File 1 is opened for communications with all defaults:
speed at 300 bps, even parity, seven data bits, and one stop bit.

10 OPEN "COM1:" AS 1

In the following, File 2 is opened for communications at 2400 bps. Parity and number of data bits
are defaulted.

20 OPEN "COM1:2400" AS #2

In the following, File 1 is opened for asynchronous I/O at 1200 bits/second. No
parity is to be produced or checked.

10 OPEN "COM1:1200,N,8" AS #1

OPTION BASE Statement
Purpose:

To declare the minimum value for array subscripts.

Syntax:

OPTION BASE n

Comments:

n is 1 or 0. The default base is 0.

If the statement OPTION BASE 1 is executed, the lowest value an array subscript can have is 1.

An array subscript may never have a negative value.

OPTION BASE gives an error only if you change the base value. This allows chained programs
to have OPTION BASE statements as long as the value is not changed from the initial setting.

Note

You must code the OPTION BASE statement before you can define or use any arrays. If an
attempt is made to change the option base value after any arrays are in use, an error results.



GW-BASIC User's Reference - 136 -

OUT Statement
Purpose:

To send a byte to a machine output port.

Syntax:

OUT h,j

Comments:

h and j are integer expressions. h may be within the range of 0 to 65535. j may be within the
range of 0 to 255. h is a machine port number, and j is the data to be transmitted.

OUT is the complementary statement to the INP function.

Examples:

100 OUT 12345,225

Outputs the decimal value 225 to port number 12345. In assembly language, this is equivalent to
the following:

MOV DX,12345
MOV AL,255
OUT DX,AL



GW-BASIC User's Reference - 137 -

PAINT Statement
Purpose:

To fill in a graphics figure with the selected attribute.

Syntax:

PAINT (x start,y start)[,paint attribute[,border attribute][,bckgrnd
attribute]]

Comments:

The PAINT statement fills in an arbitrary graphics figure of the specified
border attribute with the specified paint attribute. If paint attribute is not
given, it will default to the foreground attribute (3 or 1). border attribute
defaults to paint attribute. See the COLOR and PALETTE statements for more
information.

PAINT must start on a nonborder point, otherwise, PAINT will have no effect.

PAINT can fill any figure, but painting jagged edges or very complex figures
may result in an "Out of memory" error. The CLEAR statement may be used to
increase the amount of stack space available.

Points that are specified outside the limits of the screen will not be plotted
and no error will occur.

See the SCREEN statement for a description of the different screen modes.

Paint Tiling

PAINT tiling is similar to LINE styling. Like LINE, PAINT looks at a tiling
mask each time a point is put down on the screen.

If paint attribute is omitted, the standard foreground attribute is used.

If paint attribute is a numeric formula, then the number must be a valid color,
and it is used to paint the area as before.

If paint attribute is a string formula, then tiling is performed as follows:



GW-BASIC User's Reference - 138 -

The tile mask is always eight bits wide and may be from 1 to 64 bytes long.
Each byte in the tile string masks eight bits along the x axis when putting
down points. Each byte of the tile string is rotated as required to align along the
y axis, such that:

tile_byte_mask=y MOD tile_length

where y is the position of the graphics cursor on the y-axis.

tile_length is the length in bytes of the tile string defined by the user (1 to
64 bytes).

This is done so that the tile pattern is replicated uniformly over the entire
screen (as if a PAINT (0,0).. were used).

x Increases à Bit of Tile Byte

x,y   8 7 6 5 4 3 2 1

0,0  |x|x|x|x|x|x|x|x| Tile byte 1
0,1  |x|x|x|x|x|x|x|x| Tile byte 2
0,2  |x|x|x|x|x|x|x|x| Tile byte 3
 . . .
0,63 |x|x|x|x|x|x|x|x| Tile byte 64
 (maximum allowed)

In high-resolution mode (SCREEN 2), the screen can be painted with Xs by the
following statement:

PAINT (320,100),CHR$(&H81)+CHR$(&H42)+CHR$(&H24)+
CHR$(&H18)+CHR$(&H18)+CHR$(&H24)+CHR$(&H81)

This appears on the screen as follows:

x increases à

0,0 |x| | | | | | |x| CHR$(&H81) Tile byte 1
0,1 | |x| | | | |x| | CHR$(&H42) Tile byte 2
0,2 | | |x| | |x| | | CHR$(&H24) Tile byte 3
0,3 | | | |x|x| | | | CHR$(&H18) Tile byte 4
0,4 | | | |x|x| | | | CHR$(&H18) Tile byte 5
0,5 | | |x| | |x| | | CHR$(&H24) Tile byte 6
0,6 | |x| | | | |x| | CHR$(&H42) Tile byte 7
0,7 |x| | | | | | |x| CHR$(&H81) Tile byte 8

Since there are two bits per pixel in medium-resolution mode (SCREEN 1), each byte of the tile
pattern only describes four pixels. In this case, every two bits of the tile byte describes one of the
four possible colors associated with each of the four pixels to be put down.



GW-BASIC User's Reference - 139 -

bckgrnd attribute specifies the background tile pattern or color byte to skip when checking
for boundary termination. bckgrnd attribute is a string formula returning one character.
When omitted, the default is CHR$(0).

Occasionally, you may want to paint tile over an already painted area that is the same color as
two consecutive lines in the tile pattern. PAINT quits when it encounters two consecutive lines of
the same color as the point being set (the point is surrounded). It is not possible to draw
alternating blue and red lines on a red background without bckgrnd attribute. PAINT stops
as soon as the first red pixel is drawn. By specifying red (CHR$(&HAA)) as the background
attribute, the red line is drawn over the red background.

You cannot specify more than two consecutive bytes in the tile string that match the background
attribute. Specifying more than two results in an "Illegal function call" error.

Examples:

10 CLS
20 SCREEN 1
30 LINE (0,0)-(100,150),2,B
40 PAINT (50,50),1,2
50 LOCATE 20,1

The PAINT statement in line 40 fills in the box drawn in line 30 with  color 1.



GW-BASIC User's Reference - 140 -

PALETTE, PALETTE USING Statements
Purpose:

Changes one or more of the colors in the palette

Syntax:

PALETTE [attribute,color]
PALETTE USING integer-array-name (arrayindex)

Comments:

The PALETTE statement works only for systems equipped with the IBM (R)
Enhanced Graphics Adapter (EGA). A GW-BASIC palette contains a set of colors,
with each color specified by an attribute. Each attribute is paired with an
actual display color. This color determines the actual visual color on the
screen, and is dependent on the setting of your screen mode and your actual
physical hardware display.

PALETTE with no arguments sets the palette to a known initial setting. This
setting is the same as the setting when colors are first initialized.

If arguments are specified, color will be displayed whenever attribute is
specified in any statement that specifies a color. Any color changes on the
screen occur immediately. Note that when graphics statements use color
arguments, they are actually referring to attributes and not actual colors.
PALETTE pairs attributes with actual colors.

For example, assume that the current palette consists of colors 0, 1, 2, and 3.
The following DRAW statement:

DRAW "C3L100"

selects attribute 3, and draws a line of 100 pixels using the color associated
with the attribute 3, in this case, also 3. If the statement:

PALETTE 3,2

is executed, then the color associated with attribute 3 is changed to color 2.
All text or graphics currently displayed on the screen using attribute 3 are
instantaneously changed to color 2. All text or graphics subsequently displayed
with attribute 3 will also be displayed in color 2. The new palette of colors
will contain 0, 1, 2, and 2.

With the USING option, all entries in the palette can be modified in one PALETTE statement. The
integer-array-name argument is the name of an integer array, and the arrayindex
specifies the index of the first array element in the integer-array-name to use in setting your
palette. Each attribute in the palette is assigned a corresponding color from this integer array.
The array must be dimensioned large enough to set all the palette entries after arrayindex.



GW-BASIC User's Reference - 141 -

For example, if you are assigning colors to all 16 attributes, and the index of the first array
element given in your PALETTE USING statement is 5, then the array must be dimensioned to
hold at least 20 elements (since the number of elements from 5-20, inclusive, is 16):

DIM PAL%(20)
...
PALETTE USING PAL%(5)

If the color argument in an array entry is -1, then the mapping for the associated attribute
is not changed. All other negative numbers are illegal values for color.

You can use the color argument in the COLOR statement to set the default text color. (Remember
that color arguments in other BASIC statements are actually what are called attributes in this
discussion.) This color argument specifies the way that text characters appear on the display
screen. Under a common initial palette setting, points colored with the attribute 0 appear as
black on the display screen. Using the PALETTE statement, you could, for example, change the
mapping of attribute 0 from black to white.

Remember that a PALETTE statement executed without any parameters assigns all
attributes their default colors.

The following table lists attribute and color ranges for various monitor types and screen
modes:



GW-BASIC User's Reference - 142 -

Table 1 - SCREEN Color and Attribute Ranges

SCREEN Monitor Adapter Attribute Color
Mode Attached Range Range

0 Monochrome MDPA NA NA

Monochrome EGA 0-15 0-2

Color CGA NA 0-31 a   

Color/Enhanced d EGA 0-31 a 0-15

1 Color CGA NA 0-3

Color/Enhanced d EGA 0-3 0-15

2 Color CGA NA 0-1

Color/Enhanced d EGA 0-1 0-15

7 Color/Enhanced d EGA 0-15 0-15

8 Color/Enhanced d EGA 0-15 0-15

9 Enhanced d EGA b 0-3 0-15

Enhanced d EGA c 0-15 0-63

10 Monochrome EGA 0-3 0-8

 a  Attributes 16-31 refer to blinking versions of colors 0-15
 b  With 64K of EGA memory
 c  With greater than 64K of EGA memory
 d  IBM Enhanced Color Display
NA   = Not Applicable
CGA  = IBM Color Graphics Adapter
EGA  = IBM Enhanced Graphics Adapter
MDPA = IBM Monochrome Display and Printer Adapter

See the SCREEN statement reference page for the list of colors available for
various SCREEN mode, monitor, and graphics adapter combinations.



GW-BASIC User's Reference - 143 -

Examples:

PALETTE 0,2 'Changes all points colored with attribute 0
'to color 2

PALETTE 0,-1 'Does not modify the palette

PALETTE USING A%(0) 'Changes each palette entry. Since the
'array is initialized to zero when it
'is first declared, all attributes are
'now mapped to display color zero. The
'screen will now appear as one single
'color. However, it will still be
'possible to execute BASIC statements.

PALETTE 'Sets each palette entry to its appropriate
'initial display color. Actual initial colors
'depend on your screen hardware configuration.



GW-BASIC User's Reference - 144 -

PCOPY Command
Purpose:

To copy one screen page to another in all screen modes.

Syntax:

PCOPY sourcepage, destinationpage

Comments:

The sourcepage is an integer expression in the range 0 to n, where n is determined by the
current video-memory size and the size per page for the current screen mode.

The destinationpage has the same requirements as the sourcepage.

For more information, see CLEAR and SCREEN.

Examples:

This copies the contents of page 1 to page 2:

PCOPY 1,2



GW-BASIC User's Reference - 145 -

PEEK Function
Purpose:

To read from a specified memory location.

Syntax:

PEEK(a)

Comments:

Returns the byte (decimal integer within the range of 0 to 255) read from the specified memory
location a. a must be within the range of 0 to 65535.

The DEF SEG statement last executed determines the absolute address that will be peeked into.

PEEK is the complementary function to the POKE statement.

Examples:

10 A=PEEK(&H5A00)

The value of the byte, stored in user-assigned hex offset memory location 5A00
(23040 decimal), will be stored in the variable A.



GW-BASIC User's Reference - 146 -

PEN Statement and Function
Purpose:

To read the light pen.

Syntax:

As a statement:

PEN ON
PEN OFF
PEN STOP

As a function:

x = PEN(n)

Comments:

x is the numeric variable receiving the PEN value.

n is an integer within the range of 0 to 9.

PEN ON enables the PEN read function.

PEN OFF disables the PEN read function.

PEN STOP disables trapping. It remembers the event so immediate trapping
occurs when PEN ON is executed.

x = PEN(n) reads the light pen coordinates.

The PEN function is initially off. A PEN ON statement must be executed before
any PEN read function calls can be made, or a PEN read function call results
in an "Illegal function call" error.



GW-BASIC User's Reference - 147 -

Light pen coordinates:

n = 0 If PEN was down since last poll, returns -1; if not, returns 0.

n = 1 Returns the x-pixel coordinate when PEN was last activated. The range is within 0
to 319 for medium resolution; 0 to 639, for high resolution.

n = 2 Returns the y-pixel coordinate when PEN was last activated. The range is within 0
to 199.

n = 3 Returns the current PEN switch value. Returns -1 if down; 0 if up.

n = 4 Returns the last known valid x-pixel coordinate. The range is within 0 to 319 for
medium resolution; or 0 to 639 for high resolution.

n = 5 Returns the last known valid y-pixel coordinate. The range is within 0 to 199.

n = 6 Returns the character row position when PEN waslast activated. The range is
within 1 to 24.

n = 7 Returns the character column position when PEN was last activated. The range is
within 1 to 40, or 1 to 80, depending on the screen width.

n = 8 Returns the last known valid character row. The range is within 1 to 24.

n = 9 Returns the last known valid character column position. The range is within 1 to
40, or 1 to 80, depending on the screen width.

For execution speed improvements, turn the pen off with a PEN OFF statement for those
programs not using the light pen.

When the pen is in the border area of the screen, the values returned will be inaccurate.

Examples:

50 PEN ON
60 FOR I=1 to 500
70 X=PEN(0):X1=PEN(3)
80 Print X,X1
90 NEXT
100 PEN OFF

This example prints the pen value since the last poll and the current value.



GW-BASIC User's Reference - 148 -

PLAY Statement
Purpose:

To play music by embedding a music macro language into the string data type.

Syntax:

PLAY string expression

Comments:

The single-character commands in PLAY are as follows:

A-G [#,+,-] A-G are notes. # or + following a note produces a sharp; - produces a flat.

Any note followed by #,+ or - must refer to a black key on a piano.

L(n) Sets the length of each note. L4 is a quarter note, L1 is a whole note, and
so on. n may be from 1 to 64.

Length may also follow the note to change the length for that note only.
A16 is equivalent to L16A.

MF Music foreground. PLAY and SOUND statements are to run in foreground.
That is, each subsequent note or sound is not started until the previous
note or sound is finished. This is the initial default.

MB Music background. PLAY and SOUND statements are to run in background.
That is, each note or sound is placed in a buffer allowing the BASIC
program to continue execution while music plays in the background. As
many as 32 notes (or rests) can be played in background at one time.

MN Music normal. Each note plays seven-eighths of the time determined by L
(length).

ML Music legato. Each note plays the full period set by L.

MS Music staccato. Each note plays three-quarters of the time determined by
L.

N(n) Play note n. n may range from 0 to 84. In the 7 possible octaves, there are
84 notes. n set to 0 indicates a rest.

O(n) Octave 0 sets the current octave. There are 7 octaves (0 through 6).
Default is 4. Middle C is at the beginning of octave 3.

P(n) Pause. P may range from 1-64.



GW-BASIC User's Reference - 149 -

T(n) Tempo. T sets the number of L4s in a minute. n may range from 32-255.
Default is 120.

. (period) A period after a note increases the playing time of the note by 3/2 times
the period determined by L (length of note) times T (tempo). Multiple
periods can appear after a note, and the playing time is scaled
accordingly. For example, A. will cause the note A to play one and half
times the playing time determined by L (length of the note) times T (the
tempo); two periods placed after A (A..) will cause the note to be played at
9/4 times its ascribed value; an A with three periods (A...) at 27/8, etc.

Periods may also appear after a P (pause), and increase the pause length
as described above.

Xstring; Executes a substring, where string is a variable assigned to a string of
PLAY commands.

Because of the slow clock interrupt rate, some notes do not play at higher
tempos; for example, 1.64 at T255. These note/tempo combinations must
be determined through experimentation.

>n A greater-than symbol preceding the note n plays the note in the next
higher octave.

<n A less-than symbol preceding the note n plays the note in the next lower
octave.

Note

Numeric arguments follow the same syntax described under the DRAW  statement.

n as an argument can be a constant, or it can be a variable with = in front  of it (= variable). A
semicolon is required after the variable and also after the variable in Xstring.



GW-BASIC User's Reference - 150 -

PLAY(n) Function
Purpose:

To return the number of notes currently in the background music queue.

Syntax:

PLAY(n)

Comments:

n is a dummy argument, and may be any value.

PLAY(n) returns 0 when in music foreground mode.

The maximum returned value of x is 32.

Examples:

10 ' when 4 notes are left in
20 ' queue play another tune
30 PLAY "MBABCDABCDABCD"
40 IF PLAY (0) =4 then 200
200 PLAY "MBCDEFCDEF"



GW-BASIC User's Reference - 151 -

PMAP Function (Graphics)
Purpose:

To map expressions to logical or physical coordinates.

Syntax:

x=PMAP (exp,function)

Comments:

This function is valid for graphics modes only.

x is the physical coordinate of the point that is to be mapped.

exp is a numeric variable or expression.

Function Maps

0 logical expressions to physical x

1 logical expressions to physical y

2 physical expressions to logical x

3 physical expressions to logical y

PMAP is used with WINDOW and VIEW to translate coordinates.



GW-BASIC User's Reference - 152 -

POINT Function
Purpose:

To read the color or attribute value of a pixel from the screen.

Syntax:

POINT(x,y)
POINT(function)

Comments:

In the first syntax, x and y are coordinates of the point to be examined.

If the point given is out of range, the value -1 is returned.

See the COLOR and PALETTE statements for valid color and attribute values.

POINT with one argument allows you to retrieve the current graphics coordinates.

POINT(function) returns the value of the current x or y graphics coordinates as follows:

Function Returns

0 the current physical x coordinate.

1 the current physical y coordinate.

2 the current logical x coordinate if WINDOW is active; otherwise, it returns the
current physical x coordinate as in 0 above.

3 the current logical y coordinate if WINDOW is active; otherwise, it returns the
current physical y coordinate as in 1 above.



GW-BASIC User's Reference - 153 -

Example 1:

10 SCREEN 1
20 FOR C=0 TO 3
30 PSET (10,10),C
40 IF POINT(10,10)<>C THEN PRINT "BROKEN BASIC="
50 NEXT C
RUN

Example 2:

The following inverts the current state of a point:

10 SCREEN 2
20 IF POINT(I,I)<>0 THEN PRESET(I,I) ELSE PSET(I,I)
RUN

Example 3:

The following is another way to invert a point:

20 PSET (I,I),1-POINT(I,I)
RUN



GW-BASIC User's Reference - 154 -

POKE Statement
Purpose:

To write (poke) a byte of data into a memory location.

Syntax:

POKE a,b

Comments:

a and b are integer expressions.

The integer expression a is the offset address of the memory location to be poked. The DEF
SEG statement last executed determines the address. GW-BASIC does not check any offsets
that are specified.

The integer expression b is the data to be poked.

b must be within the range of 0 to 255. a must be within the range of 0 to 65535.

The complementary function to POKE is PEEK. The argument to PEEK is an address from which
a byte is to be read.

POKE and PEEK are useful for efficient data storage, loading assembly language subroutines,
and for passing arguments and results to and from assembly language subroutines.

Examples:

20 POKE &H5A00,&HFF

Places the decimal value 255 (&HFF) into the hex offset location (23040 decimal) See PEEK
function example.



GW-BASIC User's Reference - 155 -

POS Function
Purpose:

To return the current cursor position.

Syntax:

POS(c)

Comments:

The leftmost position is 1.

c is a dummy argument.

Examples:

10 CLS
20 WIDTH 80
30 A$=INKEY$:IF A$=""THEN GOTO 30 ELSE PRINT A$;
40 IF POS(X)>10 THEN PRINT CHR$(13);
50 GOTO 30

Causes a carriage return after the 10th character is printed on each line of the screen.



GW-BASIC User's Reference - 156 -

PRESET and PSET Statements
Purpose:

To display a point at a specified place on the screen during use of the
graphics mode.

Syntax:

PRESET(x,y)[,color]
PSET(x,y)[,color]

Comments:

(x,y) represents the coordinates of the point.

color is the color of the point.

Coordinates can be given in either absolute or relative form.

Absolute Form

(absolute x, absolute y) is more common and refers directly to a point without regard to
the last point referenced. For example:

(10,10)

Relative Form

STEP (x offset, y offset) is a point relative to the most recent point referenced. For
example:

STEP(10,10)

Coordinate values can be beyond the edge of the screen. However, values outside the integer
range (-32768 to 32767) cause an "Overflow" error.

(0,0) is always the upper-left corner and (0,199) is the lower-left corner in both high resolution
and medium resolution.

See the COLOR and PALETTE statements for more information.

If the value for color is greater than 3, an "Illegal function call" error is returned.



GW-BASIC User's Reference - 157 -

Example 1:

The following draws a diagonal line from (0,0) to (100,100).

10 CLS
20 SCREEN 1
30 FOR I=0 TO 100
40 PSET (I,I)
50 NEXT
60 LOCATE 14,1

Example 2:

The following clears out the line by setting each pixel to 0.

40 FOR I=100 TO 0 STEP -1
50 PSET(I,I),0
60 NEXT I



GW-BASIC User's Reference - 158 -

PRINT Statement
Purpose:

To output a display to the screen.

Syntax:

PRINT [list of expressions][;]
? [list of expressions][;]

Comments:

If list of expressions is omitted, a blank line is displayed.

If list of expressions is included, the values of the expressions are displayed.
Expressions in the list may be numeric and/or string expressions, separated by commas,
spaces, or semicolons. String constants in the list must be enclosed in double quotation marks.

For more information about strings, see the STRING$ function.

A question mark (?) may be used in place of the word PRINT when using the GW-BASIC
program editor.

Print Positions

GW-BASIC divides the line into print zones of 14 spaces. The position of each item printed is
determined by the punctuation used to separate the items in the list:

Separator Print Position

, Beginning of next zone

; Immediately after last value

space(s) Immediately after last value

If a comma, semicolon, or SPC or TAB function ends an expression list, the next PRINT
statement begins printing on the same line, accordingly spaced. If the expression list ends
without a comma, semicolon, or SPC or TAB function, a carriage return is placed at the end of
the lines (GW-BASIC places the cursor  at the beginning of the next line).

A carriage return/line feed is automatically inserted after printing width characters, where
width is 40 or 80, as defined in the WIDTH statement. This results in two lines being skipped
when you print exactly 40 (or 80) characters, unless the PRINT statement ends in a semicolon.

When numbers are printed on the screen, the numbers are always followed by a space. Positive
number are preceded by a space. Negative numbers are preceded by a minus (-) sign. Single-
precision numbers are represented with seven or fewer digits in a fixed-point or integer format.



GW-BASIC User's Reference - 159 -

See the LPRINT and LPRINT USING statements for information on sending data to be printed
on a printer.

Examples:

10 X$= STRING$(10,45)
20 PRINT X$"MONTHLY REPORT" X$
----------MONTHLY REPORT----------
Ok

45 is the decimal equivalent of the ASCII symbol for the minus (-) sign.



GW-BASIC User's Reference - 160 -

PRINT USING Statement
Purpose:

To print strings or numbers using a specified format.

Syntax:

PRINT USING string expressions;list of expressions[;]

Comments:

string expressions is a string literal or variable consisting of special formatting characters.
The formatting characters determine the field and the format of printed strings or numbers.

list of expressions consists of the string or numeric expressions separated by
semicolons.

String Fields

The following three characters may be used to format the string field:

! Specifies that only the first character in the string is to be printed.

\n spaces\ Specifies that 2+n characters from the string are to be printed.

If the backslashes are typed with no spaces, two characters are printed; if the
backslashes are typed with one space, three characters are printed, and so on.

If the string is longer than the field, the extra characters are ignored. If the field is
longer than the string, the string is left-justified in the field and padded with spaces
on the right. For example:

10 A$="LOOK":B$="OUT"
30 PRINT USING "!";A$;B$
40 PRINT USING"\   \";A$;B$
50 PRINT USING"\   \";A$;B$;"!!"
RUN
 LO
 LOOKOUT
 LOOK OUT!!

& Specifies a variable length string field. When the field is specified with &, the
string is output exactly as input. For example:

10 A$="LOOK":B$="OUT"
20 PRINT USING "!";A$
30 PRINT USING "&";B$
RUN
 LOUT



GW-BASIC User's Reference - 161 -

Numeric Fields

The following special characters may be used to format the numeric field:

# A pound sign is used to represent each digit position. Digit positions are always
filled. If the number to be printed has fewer digits than positions specified, the
number is right- justified (preceded by spaces) in the field.

A decimal point may be inserted at any position in the field. If the format string
specifies that a digit is to precede the decimal point, the digit always is printed (as
0 if necessary). Numbers are rounded as necessary. For example:

PRINT USING "##.##";.78
0.78
OK

PRINT USING "###.##";987.654
987.65
OK

PRINT USING "##.##" ;10.2,5.3,66.789,.234
10.20 5.30 66.79 0.23

In the last example, three spaces were inserted at the end of the format string to
separate the printed values on the line.

+ A plus sign at the beginning or end of the format string causes the sign of the
number (plus or minus) to be printed before or after the number.

- A minus sign at the end of the format field causes negative numbers to be printed
with a trailing minus sign. For example:

PRINT USING"+##.##";-68.95,2.4,55.6,-9
-68.95 +2.40 +55.60 -0.90
OK

PRINT USING"##.##-";-68.95,22.449,-7.01
68.95 22.45 7.01-
OK

** A double asterisk at the beginning of the format string causes leading spaces in
the numeric field to be filled with asterisks. The ** also specifies two more digit
positions. For example:

PRINT USING "**#.#";12.39,-0.9,765.1
*12.4* -09765.1
Ok

$$ A double dollar sign at the beginning of the format string causes a dollar sign to
be printed to the immediate left of the formatted number. The $$ specifies two
more digit positions, one of which is the dollar sign. The exponential format



GW-BASIC User's Reference - 162 -

cannot be used with $$. Negative numbers cannot be used unless the minus sign
trails to the right. For example:

PRINT USING "$$###.##";456.78
$456.78
Ok

**$ The **$ at the beginning of a format string combines the effects of the above two
symbols. Leading spaces are filled with asterisks, and a dollar sign is printed
before the number. **$ specifies three more digit positions, one of which is the
dollar sign. For example:

PRINT USING "**$##.##";2.34
***$2.34

, A comma to the left of the decimal point in the format string causes a comma to
be printed to the left of every third digit to the left of the decimal point. A comma at
the end of the format string is printed as part of the string.

PRINT USING "####.##";1234.5
1234.50
Ok

^^^^ Four carets may be placed after the digit position characters to specify
exponential format. The four carets allow space for E+xx to be printed. Any
decimal point position may be specified. The significant digits are left-justified, and
the exponent is adjusted. Unless a leading + or trailing + or - is specified, one
digit position is used to the left of the decimal point to print a space or a minus
sign. For example:

PRINT USING "##.##^^^^";234.56
2.35E+02
Ok

PRINT USING ".####^^^^-";888888
Ok

PRINT USING "+.##^^^^";123
+.12E+03
Ok

Note that in the above examples the comma is not used as a delimiter with the
exponential format.

_ An underscore in the format string causes the next character to be output as a
literal character. For example:

PRINT USING "_!##.##_!";12.34
!12.34!
Ok



GW-BASIC User's Reference - 163 -

The literal character itself may be an underscore by placing "_" in the format
string.

% A percent sign is printed in front of the number if the number to be printed is larger
than the specified numeric field. If rounding causes the number to exceed the
field, a percent sign is printed in front of the rounded number. For example:

PRINT USING "##.##";111.22
%111.22

PRINT USING ".##"';.999
%1.00

If the number of digits specified exceeds 24, an "Illegal function call"
error results.



GW-BASIC User's Reference - 164 -

PRINT# and PRINT# USING Statements
Purpose:

To write data to a sequential disk file.

Syntax:

PRINT#file number,[USINGstring expressions;]list of expressions

Comments:

file number is the number used when the file was opened for output.

string expressions consists of the formatting characters described in the PRINT USING
statement.

list of expressions consists of the numeric and/or string expressions to be written to the
file.

Double quotation marks are used as delimiters for numeric and/or string expressions. The first
double quotation mark opens the line for input; the second double quotation mark closes it.

If numeric or string expressions are to be printed as they are input, they must be surrounded by
double quotation marks. If the double quotation marks are omitted, the value assigned to the
numeric or string expression is printed. If no value has been assigned, 0 is assumed. The double
quotation marks do not appear on the screen. For example:

10 PRINT#1,A
0

10 A=26
20 PRINT#1,A
26

10 A=26
20 PRINT#1,"A"
A



GW-BASIC User's Reference - 165 -

If double quotation marks are required within a string, use CHR$(34)(the ASCII character for
double quotation marks). For example:

100 PRINT#1,"He said,"Hello", I think"
He said, 0, I think

because the machine assigns the value 0 the variable "Hello."

100 PRINT#1, "He said, "CHR$(34)
"Hello,"CHR$(34) " I think."
He said, "Hello," I think

If the strings contain commas, semicolons, or significant leading blanks, surround them with
double quotation marks. The following example will input "CAMERA" to A$, and "AUTOMATIC
93604-1" to B$:

10 A$="CAMERA,AUTOMATIC":B$="93604-1"
20 PRINT#1,A$;B$
30 INPUT#1,A$,B$

To separate these strings properly, write successive double quotation marks using CHR$(34).
For example:

40 PRINT#1,CHR$(34);A$;CHR$(34);CHR$(34);B$; CHR$(34)

"CAMERA,AUTOMATIC""93604-1"

The PRINT# statement may also be used with the USING option to control the format of the disk
file. For example:

PRINT#1,USING"$$###.##.";J;K;L

PRINT# does not compress data on the diskette. An image of the data is written to the diskette,
just as it would be displayed on the terminal screen with a PRINT statement. For this reason, be
sure to delimit the data on the diskette so that it is input correctly from the diskette.

In list of expressions, numeric expressions must be delimited by semicolons. For
example:

PRINT#1,A;B;C;X;Y;Z

If commas are used as delimiters, the extra blanks inserted between print fields will also be
written to the diskette. Commas have no effect, however, if used with the exponential format.



GW-BASIC User's Reference - 166 -

String expressions must be separated by semicolons in the list. To format the string expressions
correctly on the diskette, use explicit delimiters in list of expressions. For example, the
following:

10 A$="CAMERA":B$="93604-1"
20 PRINT#1,A$,B$

gives a diskette image of:

CAMERA93604-1

Because there are no delimiters, this would not be input as two separate strings. To correct the
problem, insert explicit delimiters into the PRINT# statement as follows:

30 PRINT#1,A$;",";B$

This gives the following diskette image, which can be read back into two string variables:

CAMERA,93604-1



GW-BASIC User's Reference - 167 -

PUT Statement (Files)
Purpose:

To write a record from a random buffer to a random disk file.

Syntax:

PUT[#]file number[,record number]

Comments:

file number is the number under which the file was opened.

record number is the number of the record. If it is omitted, the record has the next available
record number (after the last PUT).

The largest possible record number is 2 32 -1. This will allow you to have large files with short
record lengths. The smallest possible record number is 1.

The PRINT#, PRINT# USING, LSET, RSET, or WRITE# statements may be used to put
characters in the random file buffer before a PUT statement.

In the case of WRITE#, GW-BASIC pads the buffer with spaces up to an enter.

Any attempt to read or write past the end of the buffer causes a "Field overflow" error.

PUT can be used for communications files. Here record number is the number of bytes written to
the file. Record number must be less than or equal to the length of the buffer set in the OPEN
"COM(n) statement.



GW-BASIC User's Reference - 168 -

PUT Statement (Graphics)
Purpose:

To transfer graphics images to the screen.

Syntax:

PUT(x,y),array,[,action verb]

Comments:

action verb may be PSET, PRESET, AND, OR, XOR.

The (x,y) are the coordinates of the top-left corner of the image to be transferred.

The PUT and GET statements transfer graphics images to and from the screen. PUT and GET
make possible animation and high-speed object motion in either graphics mode.

The PUT statement transfers the image stored in the array onto the screen. The specified point
is the coordinate of the upper-left corner of the image. An "Illegal function call" error
results if the image to be transferred is too large to fit onto the screen.

The action verb is used to interact the transferred image with the image already on the screen.
PSET transfers the data onto the screen verbatim.

PRESET is the same as PSET except that an inverse image (black on white) is produced.

AND transfers the image only if an image already exists under the transferred image.

OR superimposes the image onto the existing image.

XOR is a special mode often used for animation. XOR causes the points on the screen to be
inverted where a point exists in the array image. This behavior is exactly like the cursor on the
screen.

XOR is especially useful for animation. When an image is put against a complex background
twice, the background is restored unchanged. An object can be moved around the screen
without obliterating the background.

The default action mode is XOR.

For more information about effects within the different modes, see the COLOR, PALETTE, and
SCREEN statements.

Animation of an object is usually performed as follows:

1. Put the object(s) on the screen.



GW-BASIC User's Reference - 169 -

2. Recalculate the new position of the object(s).

3. Put the object(s) on the screen a second time at the old location(s) to remove the old
image(s).

4. Return to Step 1, this time putting the object(s) at the new location.

Movement done this way leaves the background unchanged. Flicker can be cut down by
minimizing the time between Steps 4 and 1, and by making sure that there is enough time delay
between Steps 1 and 3. If more than one object is being animated, process every object at once,
one step at a time.

If it is not important to preserve the background, animation can be performed using the PSET
action verb.

Leave a border around the image (when it is first gotten) as large or larger than the maximum
distance the object will move. Thus, when an object is moved, this border effectively erases any
points. This method may be somewhat faster than the method using XOR described above since
only one PUT is required to move an object. However, the image to be PUT must be larger than
the existing image.

Examples:

10 CLS:SCREEN 1
20 PSET (130,120)
30 DRAW "U25;E7;R20;D32;L6;U12;L14"
40 DRAW "D12;L6":PSET(137,102)
50 DRAW "U4;E4;R8;D8;L12"
60 PSET (137,88)
70 DRAW "E4;R20;D32;G4":PAINT (131,119)
80 DIM A (500)
90 GET (125,130)-(170,80),A
100 FOR I= 1 TO 1000:NEXT I
110 PUT (20,20),A,PSET
120 FOR I= 1 TO 1000:NEXT i
130 GET (125,130)-(170,80),A
140 FOR I= 1 TO 1000:NEXT I
150 PUT (220,130),A,PRESET



GW-BASIC User's Reference - 170 -

RANDOMIZE Statement
Purpose:

To reseed the random number generator.

Syntax:

RANDOMIZE [expression]
RANDOMIZE TIMER

Comments:

If expression is omitted, GW-BASIC suspends program execution and asks for a
value by displaying the following line:

Random number seed (-32768 to 32767)?

If the random number generator is not reseeded, the RND function returns the
same sequence of random numbers each time the program is run.

To change the sequence of random numbers every time the program is run,
place a RANDOMIZE statement at the beginning of the program, and change
the argument with each run (see RND function).

RANDOMIZE with no arguments will prompt you for a new seed. RANDOMIZE
[expression] will not force floating-point values to integer. expression may be
any numeric formula.

To get a new random seed without prompting, use the new numeric TIMER
function as follows:

RANDOMIZE TIMER



GW-BASIC User's Reference - 171 -

Example 1:

The internal clock can be set at intervals.

10 RANDOMIZE TIMER
20 FOR I=1 to 5
30 PRINT RND;
40 NEXT I
RUN
.88598  .484668  .586328  .119426  .709225
Ok

RUN
.803506  .162462  .929364  .292443  .322921
Ok

Example 2:

The internal clock can be used for random number seed.

5 N=VAL(MID$(TIME$,7,2)) 'get seconds for seed
10 RANDOMIZE N 'install number
20 PRINT N 'print seconds
30 PRINT RND 'print random number generated
RUN
 36
 .2466638
Ok
RUN
 37
.6530511
Ok
RUN
 38
 5.943847E+02
Ok
RUN
 40
 .8722131
Ok



GW-BASIC User's Reference - 172 -

READ Statement
Purpose:

To read values from a DATA statement and assign them to variables.

Syntax:

READ list of variables

Comments:

A READ statement must always be used with a DATA statement.

READ statements assign variables to DATA statement values on a one-to-one basis.

READ statement variables may be numeric or string, and the values read must agree with the
variable types specified. If they do not agree, a "Syntax error” results.

A single READ statement may access one or more DATA statements. They are accessed in
order. Several READ statements may access the same DATA statement.

If the number of variables in list of variables exceeds the number of elements in the
DATA statement(s), an "Out of data" message is printed.

If the number of variables specified is fewer than the number of elements in the DATA
statement(s), subsequent READ statements begin reading data at the first unread element. If
there are no subsequent READ statements, the extra data is ignored.

To reread DATA statements from the start, use the RESTORE statement.



GW-BASIC User's Reference - 173 -

Examples:

. . .
80 FOR I=1 TO 10
90 READ A(I)
100 NEXT I
110 DATA 3.08,5.19,3.12,3.98,4.24
120 DATA 5.08,5.55,4.00,3.16,3.37
. . .

This program segment reads the values from the DATA statements into array
A. After execution, the value of A(1) is 3.08, and so on. The DATA statement
(lines 110-120) may be placed anywhere in the program; they may even be
placed ahead of the READ statement.

5 PRINT
10 PRINT "CITY","STATE","ZIP"
20 READ C$,S$,Z
30 DATA "DENVER,","COLORADO",80211
40 PRINT C$,S$,Z
RUN

CITY STATE ZIP
DENVER,COLORADO 80211
Ok

This program reads string and numeric data from the DATA statement in line
30.



GW-BASIC User's Reference - 174 -

REM Statement
Purpose:

To allow explanatory remarks to be inserted in a program.

Syntax:

REM[comment]
'[comment]

Comments:

REM statements are not executed, but are output exactly as entered when the program is listed.

Once a REM or its abbreviation, an apostrophe ('), is encountered, the program ignores
everything else until the next line number or program end is encountered.

REM statements may be branched into from a GOTO or GOSUB statement, and execution
continues with the first executable statement after the REM statement. However, the program
runs faster if the branch is made to the first statement.

Remarks may be added to the end of a line by preceding the remark with an apostrophe (')
instead of REM.

Note

Do not use REM in a DATA statement because it will be considered to be legal data.

Examples:

. . .
120 REM CALCULATE AVERAGE VELOCITY
130 FOR I=1 TO 20
440 SUM=SUM+V(I)
450 NEXT I

or

129 FOR I=1 TO 20 'CALCULATED AVERAGE VELOCITY
130 SUM=SUM+V(I)
140 NEXT I



GW-BASIC User's Reference - 175 -

RENUM Command
Purpose:

To renumber program lines.

Syntax:

RENUM[new number],[old number][,incrementR]]

Comments:

new number is the first line number to be used in the new sequence. The default is 10.

old number is the line in the current program where renumbering is to begin. The default is the
first line of the program.

increment is the increment to be used in the new sequence. The default is 10.

RENUM also changes all line number references following ELSE, GOTO, GOSUB, THEN,
ON...GOTO, ON...GOSUB, RESTORE, RESUME, and ERL statements to reflect the new line
numbers. If a nonexistent line number appears after one of these statements, the error
message, "Undefined line x in y" appears. The incorrect line number reference x is not
changed by RENUM, but line number y may be changed.

RENUM cannot be used to change the order of program lines (for example, RENUM 15,30 when
the program has three lines numbered 10, 20 and 30) or to create line numbers greater than
65529. An "Illegal function call" error results.

Examples:

RENUM

Renumbers the entire program. The first new line number will be 10. Lines
increment by 10.

RENUM 300,,50

Renumbers the entire program. The first new line number will be 300. Lines
increment by 50.

RENUM 1000,900,20

Renumbers the lines from 900 up so they start with line number 1000 and are
incremented by 20.



GW-BASIC User's Reference - 176 -

RESET Command
Purpose:

To close all disk files and write the directory information to a diskette before it is removed from a
disk drive.

Syntax:

RESET

Comments:

Always execute a RESET command before removing a diskette from a disk drive. Otherwise,
when the diskette is used again, it will not have the current directory information written on the
directory track.

RESET closes all open files on all drives and writes the directory track to every diskette with open
files.

RESTORE Statement
Purpose:

To allow DATA statements to be reread from a specified line.

Syntax:

RESTORE[line number]

Comments:

If line number is specified, the next READ statement accesses the first item in the specified DATA
statement.

If line number is omitted, the next READ statement accesses the first item in the first DATA
statement.

Examples:

10 READ A,B,C,
20 RESTORE
30 READ D,E,F
40 DATA 57,68,79
. . .

Assigns the value 57 to both A and D variables, 68 to B and E, and so on.



GW-BASIC User's Reference - 177 -

RESUME Statement
Purpose:

To continue program execution after an error-recovery procedure has been performed.

Syntax:

RESUME
RESUME 0
RESUME NEXT
RESUME line number

Comments:

Any one of the four formats shown above may be used, depending upon where execution is to
resume:

Syntax Result

RESUME or RESUME 0 Execution resumes at the statement that caused an error.

RESUME NEXT Execution resumes at the statement immediately following
the one that caused an error.

RESUME line number Execution resumes at the specified line number.

A RESUME statement that is not in an error trapping routine causes a "RESUME without
error" message to be printed.

Examples:

10 ON ERROR GOTO 900

900 IF (ERR=230)AND(ERL=90) THEN PRINT "TRY AGAIN":RESUME 80

If an error occurs after line 10 is executed, the action indicated in line 900 is taken and the
program continues at line 80.



GW-BASIC User's Reference - 178 -

RETURN Statement
Purpose:

To return from a subroutine.

Syntax:

RETURN [line number]

Comments:

The RETURN statement causes GW-BASIC to branch back to the statement following the most
recent GOSUB statement. A subroutine may contain more than one RETURN statement to return
from different points in the subroutine. Subroutines may appear anywhere in the program.

RETURN line number is primarily intended for use with event trapping. It sends the event-
trapping routine back into the GW-BASIC program at a fixed line number while still eliminating
the GOSUB entry that the trap created.

When a trap is made for a particular event, the trap automatically causes a STOP on that event
so that recursive traps can never take place. The RETURN from the trap routine automatically
does an ON unless an explicit OFF has been performed inside the trap routine.

The nonlocal RETURN must be used with care. Any GOSUB, WHILE, or FOR statement active at
the time of the trap remains active.



GW-BASIC User's Reference - 179 -

RIGHT$ Function
Purpose:

To return the rightmost i characters of string x$.

Syntax:

RIGHT$(x$,i)

Comments:

If i is equal to or greater than LEN(x$), RIGHT$ returns x$. If i equals zero, the null string
(length zero) is returned (see the MID$ and LEFT$ functions).

Examples:

10 A$="DISK BASIC"
20 PRINT RIGHT$(A$,5)
RUN
BASIC
Ok

Prints the rightmost five characters in the A$ string.



GW-BASIC User's Reference - 180 -

RMDIR Command
Purpose:

To delete a subdirectory.

Syntax:

RMDIR pathname

Comments:

pathname is a string expression, not exceeding 63 characters, identifying the subdirectory to be
removed from its parent.

The subdirectory to be deleted must be empty of all files except "." and ".." or a "Path
file/access error” is given.

Examples:

Referring to the sample directory structure illustrated in CHDIR, the following command deletes
the subdirectory report:

RMDIR "SALES\JOHN\REPORT"



GW-BASIC User's Reference - 181 -

RND Function
Purpose:

To return a random number between 0 and 1.

Syntax:

RND[(x)]

Comments:

The same sequence of random numbers is generated each time the program is run unless the
random number generator is reseeded (see RANDOMIZE statement). If x is equal to zero, then
the last number is repeated.

If x is greater than 0, or if x is omitted, the next random number in the sequence is generated.

To get a random number within the range of zero through n, use the following formula:

INT(RND*(n+1))

The random number generator may be seeded by using a negative value for x.

Examples:

10 FOR I=1 TO 5
20 PRINT INT(RND*101);
30 NEXT
RUN
 53 30 31 51 5
Ok

Generates five pseudo-random numbers within the range of 0-100.



GW-BASIC User's Reference - 182 -

RUN Command
Purpose:

To execute the program currently in memory, or to load a file from the diskette into memory and
run it.

Syntax:

RUN [line number][,r]
RUN filename[,r]

Comments:

RUN or RUN line number runs the program currently in memory.

If line number is specified, execution begins on that line. Otherwise, execution begins at the
lower line number.

If there is no program in memory when RUN is executed, GW-BASIC returns to command level.

RUN filename closes all open files and deletes the current memory contents before loading
the specified file from disk into memory and executing it.

The r option keeps all data files open.

If you are using the speaker on the computer, please note that executing the RUN command will
turn off any sound that is currently running and will reset to Music Foreground. Also, the PEN and
STRIG Statements are reset to OFF.

Examples:

RUN "NEWFIL",R

Runs NEWFIL.BAS without closing data files.



GW-BASIC User's Reference - 183 -

SAVE Command
Purpose:

To save a program file on diskette.

Syntax:

SAVE filename,[,a]
SAVE filename,[,p]

Comments:

filename is a quoted string that follows the normal MS-DOS naming conventions. If filename
already exists, the file will be written over. If the extension is omitted, .bas will be used.

The a option saves the file in ASCII format. Otherwise, GW-BASIC saves the file in a
compressed binary format. ASCII format takes more space on the diskette, but some diskette
access commands (for example, the MERGE command and some MS-DOS commands, such as
TYPE) may require an ASCII format file.

The p option protects the file by saving it in an encoded binary format. When a protected file is
later run or loaded, any attempt to list or edit it fails. When the p option is used, make an
additional copy under another name or diskette to facilitate future program maintenance.

Examples:

The following command saves the file com2.bas in the ASCII format:

SAVE "COM2",A

The following command saves the file prog.bas in binary format, and protects access:

SAVE "PROG",P



GW-BASIC User's Reference - 184 -

SCREEN Function
Purpose:

To return the ASCII code (0-255) for the character at the specified row (line) and column on the
screen.

Syntax:

x=SCREEN(row,col[,z])

Comments:

x is a numeric variable receiving the ASCII code returned.

row is a valid numeric expression within the range 1 to 25.

col is a valid numeric expression 1 to 40, or 1 to 80, depending upon screen width setting. See
the WIDTH statement.

z is a valid numeric expression with a true or false value. It may be used only in alpha mode.

The ordinal of the character at the specified coordinates is stored in the numeric variable. In
alpha mode, if the optional parameter z is given and is true (nonzero), the color attribute for the
character is returned instead of the ASCII code for the character (see the COLOR statement).

Any values entered outside of the range indicated result in an "Illegal function call"
error. Row 25 may be referenced only if the function key is off.

Examples:

100 X=SCREEN (10,10)

If the character at 10,10 is A, then X is 65.

110 X= SCREEN (1,1,1)

Returns the color attribute of the character in the upper-left corner of the screen.



GW-BASIC User's Reference - 185 -

SCREEN Statement
Purpose:

To set the specifications for the display screen.

Syntax:

SCREEN [mode] [,[colorswitch]][,[apage]][,[vpage]]

Comments:

The SCREEN statement is chiefly used to select a screen mode appropriate for a particular
display-hardware configuration. Supported hardware configurations and screen modes are
described below.

MDPA with Monochrome Display: Mode 0

The IBM Monochrome Display and Printer Adapter (MDPA) is used to connect only to a
monochrome display. Programs written for this configuration must be text mode only.

CGA with Color Display: Modes 0, 1, and 2

The IBM Color Graphics Adapter (CGA) and Color Display are typically paired with each other.
This hardware configuration permits the running of text mode programs, and both medium-
resolution and high-resolution graphics programs.

EGA with Color Display: Modes 0, 1, 2, 7, and 8

The five screen modes 0, 1, 2, 7, and 8 allow you to interface to the IBM Color Display when it is
connected to an IBM Enhanced Graphics Adapter (EGA). If EGA switches are set for CGA
compatibility, programs written for modes 1 and 2 will run just as they would with the CGA.
Modes 7 and 8 are similar to modes 1 and 2, except that a wider range of colors is available in
modes 7 and 8.

EGA with Enhanced Color Display: Modes 0, 1, 2, 7, and 8

With the EGA/IBM Enhanced Display configuration, modes 0, 1, 2, 7, and 8 are virtually identical
to their EGA/Color Display counterparts. Two possible differences are as follows:

 1. In mode 0, the border color cannot be the same as for the EGA/Color Display because the
border cannot be set on an Enhanced Color Display when it is in 640 x 350 text mode.

 2. The quality of the text is better on the Enhanced Color Display (an 8 x 14 character box for
Enhanced Color Display versus an 8 x 8 character box for color display).



GW-BASIC User's Reference - 186 -

EGA with Enhanced Color Display: Mode 9

The full capability of the Enhanced Color Display is taken advantage of in this mode. Mode 9
allows the highest resolution possible for the EGA/Enhanced Color Display configuration.
Programs written for this mode will not work for any other hardware configuration.

EGA with Monochrome Display: Mode 10

The IBM Monochrome Display can be used to display monochrome graphics at a very high
resolution in this mode. Programs written for this mode will not work for any other hardware
configuration.

Arguments

The mode argument is an integer expression with legal values 0, 1, 2, 7, 8, 9 and 10. All other
values are illegal. Selection of a mode argument depends primarily on your program's
anticipated display hardware, as described above.

Each of the SCREEN modes is described individually in the following paragraphs.

SCREEN 0

o Text mode only

o Either 40 x 25 or 80 x 25 text format with character-box size of 8 x 8 (8 x 14 with EGA)

o Assignment of 16 colors to any of 2 attributes

o Assignment of 16 colors to any of 16 attributes (with EGA)

SCREEN 1

o 320 x 200 pixel medium-resolution graphics

o 80 x 25 text format with character-box size of 8 x 8

o Assignment of 16 colors to any of 4 attributes

o Supports both EGA and CGA

o 2 bits per pixel



GW-BASIC User's Reference - 187 -

SCREEN 2

o 640 x 200 pixel high-resolution graphics

o 40 x 25 text format with character-box size of 8 x 8

o Assignment of 16 colors to any of 2 attributes

o Supports both EGA and CGA

o 1 bit per pixel

SCREEN 7

o 320 x 200 pixel medium-resolution graphics

o 40 x 25 text format with character-box size of 8 x 8

o 2, 4, or 8 memory pages with 64K, 128K, or 256K of memory, respectively, installed on
the EGA

o Assignment of any of 16 colors to 16 attributes

o EGA required

o 4 bit per pixel

SCREEN 8

o 640 x 200 pixel high-resolution graphics

o 80 x 25 text format with character-box size of 8 x 8

o 1, 2, or 4 memory pages with 64K, 128K, or 256K of memory, respectively, installed on
the EGA

o Assignment of any of 16 colors to 16 attributes

o EGA required

o 4 bits per pixel



GW-BASIC User's Reference - 188 -

SCREEN 9

o 640 x 350 pixel enhanced-resolution graphics

o 80x25 text format with character-box size of 8 x 14

o Assignment of either 64 colors to 16 attributes (more than 64K of EGA memory), or 16
colors to 4 attributes (64K of EGA memory)

o Two display pages if 256K of EGA memory installed

o EGA required

o 2 bits per pixel (64K EGA memory)
4 bits per pixel (more than 64K EGA memory)

SCREEN 10

o 640 x 350 enhanced-resolution graphics

o 80 x 25 text format with character-box size of 8 x 14

o Two display pages if 256K of EGA memory installed

o Assignment of up to 9 pseudo-colors to 4 attributes

o EGA required

o 2 bits per pixel

The following are default attributes for SCREEN 10, monochrome display:

Attribute Value Displayed Pseudo-Color

0 Off

1 On, normal intensity

2 Blink

3 On, high intensity



GW-BASIC User's Reference - 189 -

The following are color values for SCREEN 10, monochrome display:

Color Value Displayed Pseudo-Color

0 Off

1 Blink, off to on

2 Blink, off to high intensity

3 Blink, on to off

4 On

5 Blink, on to high intensity

6 Blink, high intensity to off

7 Blink, high intensity to on

8 High intensity

For both composite monitors and TVs, the colorswitch is a numeric expression that is either
true (non-zero) or false (zero). A value of zero disables color and permits display of black and
white images only. A nonzero value permits color. The meaning of the colorswitch argument
is inverted in SCREEN mode 0.

For hardware configurations that include an EGA and enough memory to support multiple-
screen pages, two arguments are available. These apage and vpage arguments determine the
"active" and "visual" memory pages. The active page is the area in memory where graphics
statements are written; the visual page is the area of memory that is displayed on the screen.

Animation can be achieved by alternating the display of graphics pages. The goal is to display
the visual page with completed graphics output, while executing graphics statements in one or
more active pages. A page is displayed only when graphics output to that page is complete.
Thus, the following program fragment is typical:

SCREEN 7,,1,2 'work in page 1, show page 2
.
. Graphics output to page 1
. while viewing page 2
.
SCREEN 7,,2,1 'work in page 2, show page 1
.
. Graphics output to page 2
. while viewing page 1
.

The number of pages available depends on the SCREEN mode and the amount of available
memory, as described in the following table:



GW-BASIC User's Reference - 190 -

Table 2 - SCREEN Mode Specifications

Attribute Color EGA           Page
Mode Resolution Range Range Memory       Pages  Size

0 40-column text NA 0-15 a NA 1 2K
80-column text NA 0-15 a NA 1 4K

1 320 x 200 0-3 b 0-3 NA 1 16K
2 640 x 200 0-1 b 0-1 NA 1 16K
7 320 x 200 0-15 0-15 64K 2 32K

128K 4
256K 8

8 640 x 200 0-15 0-15 64K 1 64K
128K 2
256K 4

9 640 x 350 0-3 0-15 64K 1 64K
0-15 0-63 128K 1 128K
0-15 0-63 256K 2

10 640 x 350 0-3 0-8 128K 1 128K
256K 2

 a  Numbers in the range 16-31 are blinking versions of the colors 0-15.
 b  Attributes applicable only with EGA.

Attributes and Colors

For various screen modes and display hardware configurations, different attribute and color
settings exist. (See the PALETTE statement for a discussion of attribute and color number.) The
majority of these attribute and color configurations are summarized in the following table:



GW-BASIC User's Reference - 191 -

Table 3 - Default Attributes and Colors for Most Screen Modes

Attributes for Mode    Color Display                 Monochrome Display
1,9 2 0,7,8,9 b    Number c     Color  Number c    Color

 0 0 0 0 Black 0 Off
1 1 Blue (Underlined) a

2 2 Green 1 On  a

3 3 Cyan 1 On  a   
4 4 Red 1 On  a

5 5 Magenta 1 On  a

6 6 Brown 1 On  a

7 7 White 1 On  a   
8 8 Gray 0 Off
9 9 Light Blue High intensity

(underlined)
10 10 Light Green 2 High intensity

1 11 11 Light Cyan 2 High intensity
12 12 Light Red 2 High intensity

2 13 13 Light Magenta 2 High intensity
14 14 Yellow 2 High intensity

3 1 15 15 High-intensity 0 Off
White

 a  Off when used for background.
 b  With EGA memory > 64K.
 c  Only for mode 0 monochrome.

The default foreground colors for the various modes are given in the following table:

Table 4 - Default Foreground Colors

Default foreground attribute Default foreground color

Screen Color/Extended Monochrome Color/Extended Monochrome
Mode Display a Display Display a Display

0 7 7 7 1
1 3 NA 15 NA
2 1 NA 15 NA
7 15 NA 15 NA
8 15 NA 15 NA
9 3 b NA 63 NA
10 NA 3 NA 8

a    IBM Enhanced Color Display
b    15 if greater than 64K of EGA memory
NA=Not Applicable



GW-BASIC User's Reference - 192 -

SGN Function
Purpose:

To return the sign of x.

Syntax:

SGN(x)

Comments:

x is any numeric expression.

If x is positive, SGN(x) returns 1.
If x is 0, SGN(x) returns 0.
If x is negative, SGN(x) returns -1.

This statement is similar to, but not the same as SIN(x), which returns a trigonometric function
in radians, rather than in ones and zeros.

Examples:

10 INPUT "Enter value",x
20 ON SGN(X)+2 GOTO 100,200,300

GW-BASIC branches to 100 if X is negative, 200 if X is 0, and 300 if X is positive.



GW-BASIC User's Reference - 193 -

SHELL Statement
Purpose:

To load and execute another program or batch file. When the program finishes, control returns to
the GW-BASIC program at the statement following the SHELL statement. A program executed
under control of GW-BASIC is referred to as a child process.

Syntax:

SHELL [string]

Comments:

string is a valid string expression containing the name of a program to run and (optionally)
command arguments.

The program name in string may have any extension that MS-DOS COMMAND.COM supports.
If no extension is supplied, COMMAND will look for a .COM file, then an .EXE file, and finally, a
.BAT file. If none is found, SHELL will issue a "File not found" error.

Any text separated from the program name by at least one blank space will be processed by
COMMAND as program parameters. GW-BASIC remains in memory while the child process is
running. When the child process finishes, GW-BASIC continues at the statement following the
SHELL statement.

SHELL with no string will go to MS-DOS. You may now do anything that COMMAND allows.
When ready to return to GW-BASIC, type the MS-DOS command EXIT.

Examples:

SHELL
A>DIR
A>EXIT
Ok

Write some data to be sorted, use SHELL SORT to sort it, then read the sorted data to write a
report.

10 OPEN "SORTIN.DAT" FOR OUTPUT AS #1
20 'write data to be sorted
. . .
1000 CLOSE 1
1010 SHELL "SORT <SORTIN.DAT >SORTOUT.DAT"
1020 OPEN "SORTOUT.DAT" FOR INPUT AS #1
1030 'Process the sorted data



GW-BASIC User's Reference - 194 -

SIN Function
Purpose:

To calculate the trigonometric sine of x, in radians.

Syntax:

SIN(x)

Comments:

SIN(x) is calculated in single-precision unless the /d switch is used when
GW-BASIC is executed.

To obtain SIN(x) when x is in degrees, use SIN(x*pi/180).

Examples:

PRINT SIN(1.5)
.9974951
Ok

The sine of 1.5 radians is .9974951 (single-precision).



GW-BASIC User's Reference - 195 -

SOUND Statement
Purpose:

To generate sound through the speaker.

Syntax:

SOUND freq,duration

Comments:

freq is the desired frequency in Hertz (cycles per second). freq is a numeric expression within
the range of 37 to 32767.

duration is the desired duration in clock ticks. Clock ticks occur 18.2 times per second.
duration must be a numeric expression within the range of 0 to 65535.

Values below .022 produce an infinite sound until the next SOUND or PLAY statement is
executed.

If duration is zero, any active SOUND statement is turned off. If no SOUND statement is running,
a duration of zero has no effect.

The sound is executed in foreground or background depending on the PLAY statement.

Examples:

The following example creates random sounds of short duration:

2500 SOUND RND*1000+37,2
2600 GOTO 2500



GW-BASIC User's Reference - 196 -

The following table shows the relationship of notes and their frequencies in the two octaves
adjacent to middle C.

Table 5 - Relationships of Notes and Frequencies
_________________________________________________________________________

Note Frequency Note Frequency
_________________________________________________________________________

C 130.810 C* 523.250
D 146.830 D 587.330
E 164.810 E 659.260
F 174.610 F 698.460
G 196.000 G 783.990
A 220.000 A 880.000
B 246.940 B 987.770
C 261.630 C 1046.500
D 293.660 D 1174.700
E 329.630 E 1318.500
F 349.230 F 1396.900
G 392.000 G 1568.000
A 440.000 A 1760.000
B 493.880 B 1975.500
_________________________________________________________________________

*Middle C.

By doubling or halving the frequency, the coinciding note values can be estimated for the
preceding and following octaves.

To produce periods of silence, use the following statement:

SOUND 32767,duration

To calculate the duration of one beat, divide beats per minute into the number of clock ticks in a
minute (1092).



GW-BASIC User's Reference - 197 -

The following table illustrates tempos requested by clock ticks:

Table 6 - Tempos Requested by Clock Ticks

Beats/ Ticks/
Tempo Notation Minute Beat

very slow Larghissimo
Largo 40-66 27.3-18.2
Laghetto 60-66 18.2-16.55
Grave
Lento
Adagio 66-76 16.55-14.37

slow Adagietto
Andante 76-108 14.37-10.11

medium Andantino
Moderato 108-120 10.11-9.1

fast Allegretto
Allegro 120-168 9.1-6.5
Vivace
Veloce
Presto 168-208 6.5-5.25

very fast Prestissimo



GW-BASIC User's Reference - 198 -

SPACE$ Function
Purpose:

To return a string of x spaces.

Syntax:

SPACE$(x)

Comments:

x is rounded to an integer and must be within the range of 0 to 255 (see SPC function).

Examples:

10 FOR N=1 TO 5
20 X$=SPACE$(N)
30 PRINT X$;N
40 NEXT N
RUN
1
 2
  3
   4
    5
Ok

Line 20 adds one space for each loop execution.



GW-BASIC User's Reference - 199 -

SPC Function
Purpose:

To skip a specified number of spaces in a PRINT or an LPRINT statement.

Syntax:

SPC(n)

Comments:

n must be within the range of 0 to 255.

If n is greater than the defined width of the printer or the screen, the value used will be n MOD
width.

A semicolon is assumed to follow the SPC(n) command.

SPC may only be used with PRINT, LPRINT and PRINT# statements (see the SPACE$ function).

Examples:

PRINT "OVER" SPC(15) "THERE"
OVER            THERE
Ok



GW-BASIC User's Reference - 200 -

SQR Function
Purpose:

Returns the square root of x.

Syntax:

SQR(x)

Comments:

x must be greater than or equal to 0.

SQR(x) is computed in single-precision unless the /d switch is used when GW-BASIC is
executed.

Examples:

10 FOR X=10 TO 25 STEP 5
20 PRINT X; SQR(X)
30 NEXT
RUN
10 3.162278
15 3.872984
20 4.472136
25 5
Ok



GW-BASIC User's Reference - 201 -

STICK Function
Purpose:

To return the x and y coordinates of two joysticks.

Syntax:

x=STICK(n)

Comments:

x is a numeric variable for storing the result.

n is a valid numeric expression within the range of 0 to 3.

Value of n Coordinate Returned

0 x coordinate of joystick A. Stores the x and y values
for both joysticks for the following three function calls.

1 y coordinate of joystick A.

2 x coordinate of joystick B.

3 y coordinate of joystick B.



GW-BASIC User's Reference - 202 -

STOP Statement
Purpose:

To terminate program execution and return to command level.

Syntax:

STOP

Comments:

STOP statements may be used anywhere in a program to terminate execution. When a STOP is
encountered, the following message is printed:

Break in line nnnnn

Unlike the END statement, the STOP statement does not close files.

GW-BASIC always returns to command level after a STOP is executed. Execution is resumed by
issuing a CONT command.

Examples:

10 INPUT A,B,C
20 K=A^2*5.3:L=B^3/.26
30 STOP
40 M=C*K+100:PRINT M
RUN
? 1,2,3
BREAK IN 30
Ok
PRINT L
30.76923
Ok
CONT
115.9
Ok



GW-BASIC User's Reference - 203 -

STR$ Function
Purpose:

To return a string representation of the value of x.

Syntax:

STR$(x)

Comments:

STR$(x) is the complementary function to VAL(x$) (see the VAL function).

Examples:

5 REM ARITHMETIC FOR KIDS
10 INPUT "TYPE A NUMBER";N
20 ON LEN(STR$(N)) GOSUB 30,40,50
. . .

This program branches to various subroutines, depending on the number of
characters typed before the RETURN key is pressed.



GW-BASIC User's Reference - 204 -

STRIG Statement and Function
Purpose:

To return the status of the joystick triggers.

Syntax:

As a statement:

STRIG ON
STRIG OFF

As a function:

x=STRIG(n)

Comments:

x is a numeric variable for storing the result.

n is a valid numeric expression within the range of 0 to 7.

STRIG ON must be executed before any STRIG(n) function calls may be made. Once STRIG
ON is executed, GW-BASIC will check to see if a button has been pressed before every
statement is executed. STRIG OFF disables the checking.

n is a numeric expression within the range of 0 to 7 that returns the following values:

Value of n Returns

0 -1 if trigger A1 was pressed since the last STRIG(0) statement; returns 0, if not.

1 -1 if trigger A1 is currently pressed; returns 0, if not.

2 -1 if trigger B1 was pressed since the last STRIG(2) statement; returns 0, if not.

3 -1 if trigger B1 is currently pressed; returns 0, if not.

4 -1 if trigger A2 was pressed since the last STRIG(4) statement; returns 0 if not.

5 -1 if trigger A2 is currently pressed; returns 0, if not.



GW-BASIC User's Reference - 205 -

STRIG(n) Statement
Purpose:

To allow the use of a joystick by enabling or disabling the trapping of its buttons.

Syntax:

STRIG(n) ON
STRIG(n) OFF
STRIG(n) STOP

Comments:

n is 0, 2, 4, or 6, corresponding to the buttons on the joystick, where

0 is button A1
2 is button B1
4 is button A2
6 is button B2

Examples:

STRIG(n) ON

Enables trapping of the joystick buttons. After this statement is executed, GW-BASIC checks to
see if this button has been pressed before executing following statements.

STRIG(n) OFF

Disables GW-BASIC from checking the state of the button.

STRIG(n) STOP

Disables trapping of a given button through the ON STRIG(n) statement. But, any pressings
are remembered so that trapping may take place once it is reenabled.



GW-BASIC User's Reference - 206 -

STRING$ Function
Purpose:

To return

o a string of length n whose characters all have ASCII code j, or

o the first character of x$

Syntax:

STRING$(n,j)
STRING$(n,x$)

Comments:

STRING$ is also useful for printing top and bottom borders on the screen or the printer.

n and j are integer expressions in the range 0 to 255.

Examples:

10 X$ = STRING$(10,45)
20 PRINT X$ "MONTHLY REPORT" X$
RUN
----------MONTHLY REPORT----------
Ok

45 is the decimal equivalent of the ASCII symbol for the minus (-) sign.

Appendix C in the GW-BASIC User's Guide lists ASCII character codes.



GW-BASIC User's Reference - 207 -

SWAP Statement
Purpose:

To exchange the values of two variables.

Syntax:

SWAP variable1,variable2

Comments:

Any type variable may be swapped (integer, single-precision, double-precision, string), but the
two variables must be of the same type or a "Type mismatch" error results.

Examples:

LIST
10 A$="ONE ":B$="ALL ":C$="FOR "
20 PRINT A$ C$ B$
30 SWAP A$, B$
40 PRINT A$ C$ B$
RUN
Ok
ONE FOR ALL
ALL FOR ONE
Ok

Line 30 swaps the values in the A$ and B$ strings.



GW-BASIC User's Reference - 208 -

SYSTEM Command
Purpose:

To return to MS-DOS.

Syntax:

SYSTEM

Comments:

Save your program before pressing RETURN, or the program will be lost.

The SYSTEM command closes all the files before it returns to MS-DOS. If you
entered GW-BASIC through a batch file from MS-DOS, the SYSTEM command returns you to the
batch file, which continues executing at the point it left off.

Examples:

SYSTEM
A>



GW-BASIC User's Reference - 209 -

TAB Function
Purpose:

Spaces to position n on the screen.

Syntax:

TAB(n)

Comments:

If the current print position is already beyond space n, TAB goes to that position on the next line.

Space 1 is the leftmost position. The rightmost position is the screen width.

n must be within the range of 1 to 255.

If the TAB function is at the end of a list of data items, GW-BASIC will not return the cursor to the
next line. It is as though the TAB function has an implied semicolon after it.

TAB may be used only in PRINT, LPRINT, or PRINT# statements (see the SPC function).

Examples:

10 PRINT "NAME" TAB(25) "AMOUNT": PRINT
20 READ A$,B$
30 PRINT A$ TAB(25) B$
40 DATA "G. T. JONES","$25.00"
RUN
NAME AMOUNT

G. T. JONES $25.00
Ok



GW-BASIC User's Reference - 210 -

TAN Function
Purpose:

To calculate the trigonometric tangent of x, in radians.

Syntax:

TAN(x)

Comments:

TAN(x) is calculated in single-precision unless the /d switch is used when GW-BASIC is
executed.

If TAN overflows, the "Overflow" error message is displayed; machine infinity with the
appropriate sign is supplied as the result, and execution continues.

To obtain TAN(x) when x is in degrees, use TAN(x*pi/180).

Examples:

10 Y = TAN(X)

When executed, Y will contain the value of the tangent of X radians.



GW-BASIC User's Reference - 211 -

TIME$ Statement and Variable
Purpose:

To set or retrieve the current time.

Syntax:

As a statement:

TIME$ = string exp

As a variable:

string exp=TIME$

Comments:

string exp is a valid string literal or variable that lets you set hours (hh),
hours and minutes (hh:mm), or hours, minutes, and seconds (hh:mm:ss).

hh sets the hour (0-23). Minutes and seconds default to 00.

hh:mm sets the hour and minutes (0-59). Seconds default to 00.

hh:mm:ss sets the hour, minutes, and seconds (0-59).

If string exp is not a valid string, a "Type mismatch" error results.

As you enter any of the above values, you may omit the leading zero, if any.
You must, however, enter at least one digit. If you wanted to set the time as a
half hour after midnight, you could enter TIME$= "0:30", but not TIME$=
":30".

If any of the values are out of range, an "Illegal function call" error is
issued. The previous time is retained.

The current time is stored if TIME$ is the target of a string assignment.

The current time is fetched and assigned to the string variable if TIME$ is the
expression in a LET or PRINT statement.

If string exp = TIME$, TIME$ returns an 8-character string in the form
hh:mm:ss.



GW-BASIC User's Reference - 212 -

Examples:

The following example sets the time at 8:00 A.M.:

TIME$ = "08:00"
Ok
PRINT TIME$
08:00:05
Ok

The following program displays the current date and time on the 25th line of
the screen and will sound on the minute and half minute.

10 KEY OFF:SCREEN 0:WIDTH 80:CLS
20 LOCATE 25,5
30 PRINT DATE$,TIME$;
40 SEC=VAL(MID$(TIME$,7,2))
50 IF SEC=SSEC THEN 20 ELSE SSEC=SEC
60 IF SEC=0 THEN 1010
70 IF SEC=30 THEN 1020
80 IF SEC<57 THEN 20

1000 SOUND 1000,2:GOTO 20
1010 SOUND 2000,8:GOTO 20
1020 SOUND 400,4:GOTO 20

TIMER Function
Purpose:

To return single-precision floating-point numbers representing the elapsed number of seconds
since midnight or system reset.

Syntax:

v=TIMER

Comments:

Fractions of seconds are calculated to the nearest degree possible. Timer is read-only.



GW-BASIC User's Reference - 213 -

TRON/TROFF Commands
Purpose:

To trace the execution of program statements.

Syntax:

TRON
TROFF

Comments:

As an aid in debugging, the TRON (trace on) command enables a trace flag that prints each line
number of the program as it is executed. The numbers appear enclosed in square brackets.

TRON may be executed in either the direct or indirect mode.

The trace flag is disabled with the TROFF (trace off) command, or when a NEW command is
executed.

Examples:

TRON
Ok
10 K=10
20 FOR J=1 TO 2
30 L=K + 10
40 PRINT J;K;L
50 K=K+10
60 NEXT
70 END
RUN
[10][20][30][40] 1 10 20
[50][60][30][40] 2 20 30
[50][60][70]
Ok
TROFF
Ok



GW-BASIC User's Reference - 214 -

UNLOCK Statement
Purpose:

To release locks that have been applied to an opened file. This is used in a multi-device
environment, often referred to as a network or network environment.

Syntax:

UNLOCK [#]n [,[record number] [TO record number]]

Comments

n is the number that was assigned the file as it was originally numbered in the program.

record number is the number of the individual record that is to be unlocked. Or, if a range of
records are to be unlocked, record number designates the  beginning and ending record of
the specified range.

The range of legal record numbers is 1 to 2 32 -1. The limit on record size is 32767 bytes.

The record range specified must be from lower to (the same or) higher record numbers.

If a starting record number is not specified, the record number 1 is assumed.

If an ending record number is not specified, then only the specified record is unlocked.

The following are legal UNLOCK statements:

UNLOCK #n unlocks the entire file n

UNLOCK #n, X unlocks record X only

UNLOCK #n, TO Y unlocks records 1 through Y

UNLOCK #n, X TO Y unlocks records X through Y

The locked file or record range should be unlocked before the file is closed.

Failure to execute the UNLOCK statement can jeopardize future access to that file in a network
environment.

In the case of files opened in random mode, if a range of record numbers is specified, this range
must match exactly the record number range given in the LOCK statement.

The "Permission denied" message will appear if a syntactically correct UNLOCK request
cannot be granted. The UNLOCK statement must match exactly the paired LOCK statement.



GW-BASIC User's Reference - 215 -

It is expected that the time in which files or regions within files are locked will be short, and thus
the suggested usage of the LOCK statement is within shortterm paired LOCK/UNLOCK
statements.

Examples:

The following demonstrates how the LOCK/UNLOCK statements should be used:

LOCK #1, 1 TO 4
LOCK #1, 5 TO 8
UNLOCK #1, 1 TO 4
UNLOCK #1, 5 TO 8

The following example is illegal:

LOCK #1, 1 TO 4
LOCK #1, 5 TO 8
UNLOCK #1, 1 TO 8



GW-BASIC User's Reference - 216 -

USR Function
Purpose:

To call an assembly language subroutine.

Syntax:

v=USR[n](argument)

Comments:

n specifies which USR routine is being called.

argument can be any numeric or string expression.

Although the CALL statement is recommended for calling assembly language subroutines, the
USR function call may also be used. See Appendix D in the GW-BASIC User's Guide for a
comparison of CALL and USR and for a detailed discussion of calling assembly language
subroutines.

Only values 0-9 are valid for n. If n is omitted, USR0 is assumed (see DEF USR for the rules
governing n).

If a segment other than the default segment (GW-BASIC data segment, DS) is used, a DEF SEG
statement must be executed prior to a USR call. This ensures that the code segment points to
the subroutine being called.

The segment address given in the DEF SEG statement determines the starting segment of the
subroutine.

For each USR function, a corresponding DEF USR statement must have been executed to define
the USR call offset. This offset and the currently active DEF SEG segment address determine the
starting address of the subroutine.

If more than 10 user routines are required, the value(s) of DEF USR may be redefined for the
other starting addresses as many times as needed.

The type (numeric or string) of the variable receiving the function call must be consistent with the
argument passed. If no argument is required by the assembly language routine, then a dummy
argument must be supplied.



GW-BASIC User's Reference - 217 -

VAL Function
Purpose:

Returns the numerical value of string x$.

Syntax:

VAL(x$)

Comments:

The VAL function also strips leading blanks, tabs, and line feeds from the argument string. For
example, the following line returns -3:

VAL(" -3")

The STR$ function (for numeric to string conversion) is the complement to the VAL(x$)
function.

If the first character of x$ is not numeric, the VAL(x$) will return zero.

Examples:

10 READ NAME$,CITY$,STATE$,ZIP$
20 IF VAL(ZIP$)<90000 OR VAL(ZIP$)>96699 THEN
PRINT NAME$ TAB(25) "OUT OF STATE"
30 IF VAL(ZIP$)>=90801 AND VAL(ZIP$)<=90815 THEN
PRINT NAME$ TAB(25) "LONG BEACH"



GW-BASIC User's Reference - 218 -

VARPTR Function
Purpose:

To return the address in memory of the variable or file control block (FCB).

Syntax:

VARPTR(variable name)
VARPTR(#file number)

Comments:

VARPTR is usually used to obtain the address of a variable or array so it can be passed to an
assembly language subroutine. A function call of the following form:

VARPTR(A(0))

is usually specified when passing an array, so that the lowest-addressed element of the array is
returned.

All simple variables should be assigned before calling VARPTR for an array, because the
addresses of the arrays change whenever a new simple variable is assigned.

VARPTR (#file number) returns the starting address of the GW-BASIC File Control Block
assigned to file number.

VARPTR (variable name) returns the address of the first byte of data identified with the
variable name.

A value must be assigned to variable name prior to execution of VARPTR, otherwise, an
"Illegal function call" error results.

Any type variable name may be used (numeric, string, or array), and the address returned will be
an integer within the range of 32767 to -32768. If a negative address is returned, it is added to
65536 to obtain the actual address.

Offsets to information in the FCB from the address returned by VARPTR are shown in the
following table:



GW-BASIC User's Reference - 219 -

Table 7 - Offsets to FCB Information
_________________________________________________________________________

Offset Length Name Description
_________________________________________________________________________

0 1 Mode The mode in which the file was opened:
1 Input only
2 Output only
4 Random I/O
16 Append only
32 Internal use
64 Future use
128 Internal use

1 38 FCB Diskette file control block.

39 2 CURLOC Number of sectors read or written for
sequential access. The last record number +1 read or
written for random files.

41 1 ORNOFS Number of bytes in sector when read
or written.

42 1 NMLOFS Number of bytes left in INPUT buffer.

43 3 *** Reserved for future expansion.

46 1 DEVICE Device Number:
0-9 Disks A: through J:
255 KYBD:
254 SCRN:
253 LPT1:
252 CAS1:
251 COM1:
250 COM2:
249 LPT2:
248 LPT3:

47 1 WIDTH Device width.

48 1 POS Position in buffer for PRINT.

49 1 FLAGS Internal use during BLOAD/BSAVE.
Not used for data files.

50 1 OUTPOS Output position used during tab
expansion.

51 128 BUFFER Physical data buffer. Used to transfer
data between DOS and BASIC. Use



GW-BASIC User's Reference - 220 -

this offset to examine data in
sequential I/O mode.

179 2 VRECL Variable length record size. Default is
128 Set by length option in OPEN

statement.

181 2 PHYREC Current physical record number.

183 2 LOGREC Current logical record number.

185 1 *** Future use.

186 2 OUTPOS Disk files only. Output position for
PRINT, INPUT, and WRITE.

188 n FIELD Actual FIELD data buffer. Size is
determined by S:switch. VRECL bytes
are transferred between BUFFER and
FIELD on I/O operations. Use this
offset to examine file data in random
I/O mode.

Example 1:

100 X=VARPTR(Y)

When executed, the variable X will contain an address that points to the
storage space assigned to the variable Y.

Example 2:

10 OPEN "DATA.FIL" AS #1
20 FCBADR = VARPTR(#1)
30 DATADR = FCBADR+188
40 A$ = PEEK(DATADR)

In line 20, FCBADR contains the start of FCB.

In line 30, DATADR contains the address of the data buffer.

In line 40, A$ contains the first byte in the data buffer.



GW-BASIC User's Reference - 221 -

VARPTR$ Function
Purpose:

To return a character form of the offset of a variable in memory.

Syntax:

VARPTR$(variable)

Comments:

variable is the name of a variable that exists in the program.

Note

Assign all simple variables before calling VARPTR$ for an array element, because the array
addresses change when a new simple variable is assigned.

VARPTR$ returns a three-byte string of the following form:

| Byte 0 | Byte 1 | Byte 2 |

Byte 0 contains one of the following variable types:

2 integer

3 string

4 single-precision

8 double precision

Byte 1 contains the 8086 address format, and is the least significant byte.
Byte 2 contains the 8086 address format, and is the most significant byte.

Examples:

100 X = USR(VARPTR$(Y))



GW-BASIC User's Reference - 222 -

VIEW Statement
Purpose:

To define a physical viewport limit from x1,y1 (upper-left x,y coordinates)
to x2,y2 (lower-right x,y coordinates).

Syntax:

VIEW [[SCREEN][(x1,y1)-(x2,y2) [,[fill][,[border]]]]

Comments:

RUN or VIEW with no arguments define the entire screen as the viewport.

(x1,y1) are the upper-left coordinates.

(x2,y2) are the lower-right coordinates.

The fill attribute lets you fill the view area with color.

The border attribute lets you draw a line surrounding the viewport if space for a border is
available. If border is omitted, no border is drawn.

The x and y coordinates must be within the physical bounds of the screen and define the
rectangle within the screen that graphics map into. The x and y coordinate pairs will be sorted,
with the smallest values placed first.

Points are plotted relative to the viewpoint if the screen argument is omitted; that is, x1 and y1
are added to the x and y coordinates before the point is plotted.

It is possible to have a varied number of pairs of x and y. The only restriction is that x1 cannot
equal x2, and y1 cannot equal y2.

Points are plotted absolutely if the SCREEN argument is present. Only points within the current
viewpoint will be plotted.

When using VIEW, the CLS statement clears only the current viewport. To clear the entire
screen, you must use VIEW to disable the viewports. Then use CLS to clear the screen. CLS
does not move the cursor to home. Press CTRL-HOME to send the cursor home, and clear the
screen.



GW-BASIC User's Reference - 223 -

Examples:

The following defines a viewport such that the statement PSET(0,0),3 would
set down a point at the physical screen location 10,10.

VIEW (10,10)-(200,100)

The following defines a viewport such that the point designated by the state-
ment PSET(0,0),3 would not appear because 0,0 is outside of the viewport.
PSET(10,10),3 would be within the viewport.

VIEW SCREEN (10,10)-(200,100)

VIEW PRINT Statement
Purpose:

To set the boundaries of the screen text window.

Syntax:

VIEW PRINT [topline TO bottomline]

Comments:

VIEW PRINT without topline and bottomline parameters initializes the whole screen area
as the text window. The whole screen area consists of lines 1 to 24; by default, line 25 is not
used.

Statements and functions that operate within the defined text window include CLS, LOCATE,
PRINT, and SCREEN.

The screen editor will limit functions such as scroll and cursor movement to the text window.

For more information, see VIEW.



GW-BASIC User's Reference - 224 -

WAIT Statement
Purpose:

To suspend program execution while monitoring the status of a machine input port.

Syntax:

WAIT port number, n[,j]

Comments:

port number represents a valid machine port number within the range of 0 to 65535.

n and j are integer expressions in the range of 0 to 255.

The WAIT statement causes execution to be suspended until a specified machine input port
develops a specified bit pattern.

The data read at the port is XORed with the integer expression j, and then ANDed with n.

If the result is zero, GW-BASIC loops back and reads the data at the port again. If the result is
nonzero, execution continues with the next statement.

When executed, the WAIT statement tests the byte n for set bits. If any of the bits is set, then the
program continues with the next statement in the program. WAIT does not wait for an entire
pattern of bits to appear, but only for one of them to occur.

It is possible to enter an infinite loop with the WAIT statement. You can exit the loop by pressing
CTRL-BREAK, or by resetting the system.

If j is omitted, zero is assumed.

Examples:

100 WAIT 32,2

Suspends machine operation until port 32 receives 2 as input.



GW-BASIC User's Reference - 225 -

WHILE-WEND Statement
Purpose:

To execute a series of statements in a loop as long as a given condition is true.

Syntax:

WHILE expression
.
[loop statements]
.
WEND

Comments:

If expression is nonzero (true), loop statements are executed until the WEND statement is
encountered. GW-BASIC then returns to the WHILE statement and checks expression. If it is still
true, the process is repeated.

If it is not true, execution resumes with the statement following the WEND statement.

WHILE and WEND loops may be nested to any level. Each WEND matches the most recent
WHILE.

An unmatched WHILE statement causes a "WHILE without WEND" error. An unmatched WEND
statement causes a "WEND without WHILE" error.

Examples:

90 'BUBBLE SORT ARRAY A$
100 FLIPS=1
110 WHILE FLIPS
115 FLIPS=0
120 FOR N=1 TO J-1
130 IF A$(N)>A$(N+1) THEN SWAP A$(N),A$(N+1):FLIPS=1
140 NEXT N
150 WEND



GW-BASIC User's Reference - 226 -

WIDTH Statement
Purpose:

To set the printed line width in number of characters for the screen and line printer.

Syntax:

WIDTH size
WIDTH file number, size
WIDTH "dev", size

Comments:

size, an integer within the range of 0 to 255, is the new width.

file number is the number of the file that is open.

dev is a valid string expression identifying the device. Valid devices are SCRN:, LPT1:, LPT2:,
LPT3:, COM1:, and COM2:.

Changing Screen Width

The following statements are used to set the screen width. Only a 40- or 80-column width is
allowed.

WIDTH size
WIDTH "SCRN:",size

See the SCREEN statement for more information.

Changing SCREEN mode affects screen width only when moving between SCREEN 2 and
SCREEN 1 or SCREEN 0.

Note

Changing the screen width clears the screen and sets the border screen color to black.



GW-BASIC User's Reference - 227 -

Changing Lineprinter Width

The following WIDTH statement is used as a deferred width assignment for the lineprinter. This
statement stores the new width value without actually changing the current width setting:

WIDTH "LPT1:",size

A statement of the following form recognizes this stored width value:

OPEN "LPT1:" FOR OUTPUT AS number

and uses it while the file is open:

WIDTH file number,size

If the file is open to lpt1:, lineprinter width is immediately changed to the new size specified. This
allows the width to be changed at will while the file is open. This form of WIDTH has meaning
only for lpt1:. After outputting the indicated number of characters from the open file, GW-BASIC
inserts a carriage return at the end of the line and wraps the output, if the width is less than the
length of the record.

Valid widths for the line printer are 1 through 255.

Specifying WIDTH 255 for the line printer (lpt1:) enables line wrapping. This has the effect of
infinite width.

Any value entered outside of these ranges results in an "Illegal function call" error. The
previous value is retained.

Using the WIDTH statement on a communications file causes a carriage return to be sent after
the number of characters specified by the size attribute. It does not alter either the receive or
transmit buffer.

Examples:

10 WIDTH "LPT1:",75
20 OPEN "LPT1:" FOR OUTPUT AS #1

6020 WIDTH #1,40

Line 10 stores a line printer width of 75 characters per line.

Line 20 opens file #1 to the line printer and sets the width to 75 for subsequent PRINT #1,
statements.

Line 6020 changes the current line printer width to 40 characters per line.



GW-BASIC User's Reference - 228 -

WINDOW Statement
Purpose:

To draw lines, graphics, and objects in space not bounded by the physical limits of the screen.

Syntax:

WINDOW[[SCREEN](x1,y1)-(x2,y2)]

Comments:

(x1,y1), (x2,y2) are the coordinates defined by the user. These coordinates, called the
world coordinates, may be any single-precision, floating-point number. They define the world
coordinate space that graphics statements map into the physical coordinate space, as defined
by the VIEW statement.

WINDOW is the rectangular region in the world coordinate space. It allows zoom and pan. It
allows the user to draw lines, graphics, and objects in space not bounded by the physical limits
of the screen. To do this the user specifies the world coordinate pairs (x1,y1) and (x2,y2).
GW-BASIC then converts the world coordinate pairs into the appropriate physical coordinate
pairs for subsequent display within screen space.

Window inverts, with the screen attribute omitted, the y coordinate on subsequent graphics
statements. This places the (x1,y1) coordinate in the lower-left and the (x1,y2) coordinate in
the upper-right of the screen. This allows the screen to be viewed in true Cartesian coordinates.

The coordinates are not inverted when the SCREEN attribute is included. This places the
(x1,y1) coordinate in the upper-left and the (x2,y2) coordinate in the lower-right corner of
the screen.



GW-BASIC User's Reference - 229 -

The WINDOW statement sorts the x and y argument pairs into ascending order.
For example:

WINDOW (50,50)-(10,10)

becomes

WINDOW (10,10)-(50,50)

Or

WINDOW (-2,2)-(2,-2)

becomes

WINDOW (-2,-2)-(2,2)

All coordinate pairs of x and y are valid, except that x1 cannot equal x2  and y1 cannot equal
y2.

WINDOW with no arguments disables previous window statements.

Example 1:

If you type the following:

NEW
SCREEN 2

the screen uses the standard coordinate attributes as follows:

(0,0) (320,0) (639,0)

? y increases
(320,100)

(0,199) (320,199) (639,199)



GW-BASIC User's Reference - 230 -

Example 2:

If you type the following:

WINDOW (-1,-1)-(1,1)

the screen uses the Cartesian coordinates as defined in the following statement:

(-1,1) (0,1) (1,1)

? y increases
(0,0)

? y decreases

(-1,1) (0,1) (1,1)

Example 3:

If you type the following:

WINDOW SCREEN (-1,-1)-(1,1)

the screen uses the non-inverted coordinate as defined in the following statement:

(-1,-1) (0,-1) (1,-1)

? y decreases
(0,0)

? y increases

(-1,1) (0,1) (1,1)

RUN, SCREEN, and WINDOW with no attributes disable any WINDOW definitions and return the
screen to its normal physical coordinates.



GW-BASIC User's Reference - 231 -

WRITE Statement
Purpose:

To output data to the screen.

Syntax:

WRITE[list of expressions]

Comments:

If list of expressions is omitted, a blank line is output. If list of expressions is included, the
values of the expressions are output at the terminal. The expressions in the list may be numeric
and/or string expressions, and must be separated by commas or semicolons.

When printed items are output, each item will be separated from the last by a comma. Printed
strings are delimited by double quotation marks. After the  last item in the list is printed, GW-
BASIC inserts a carriage return/line feed.

The difference between WRITE and PRINT is that WRITE inserts commas between displayed
items and delimits strings with double quotation marks. Positive numbers are not preceded by
blank spaces.

WRITE outputs numeric values using the same format as the PRINT statement.

Examples:

10 A=80:B=90:C$="THAT'S ALL"
20 WRITE A,B,C$
RUN
80, 90,"THAT'S ALL"
Ok



GW-BASIC User's Reference - 232 -

WRITE# Statement
Purpose:

To write data to a sequential file.

Syntax:

WRITE #filenum, list of expressions

Comments:

filenum is the number under which the file was opened for output.

list of expressions is a list of string and/or numeric expressions separated by commas or
semicolons.

The WRITE# and PRINT# statements differ in that WRITE# inserts commas between the items
as they are written and delimits strings with quotation marks, making explicit delimiters in the list
unnecessary. Another difference is that WRITE# does not put a blank in front of a positive
number. After the last item in the list is written, a carriage return/line feed sequence is inserted.

Examples:

Let A$ = "CAMERA" and B$ = "93604-1". The following statement:

WRITE#1,A$,B$

writes the following image to disk:

"CAMERA", "93604-1"

A subsequent INPUT$ statement, such as the following, would input "CAMERA" to A$ and
"93604-1" to B$:

INPUT#1,A$,B$


	Cover Page
	GW-BASIC User's Guide
	Table of Contents
	Tables Overview
	Impressum
	Welcome to GW-BASIC
	System Requirements
	Preliminaries
	Notational Conventions
	Organization of This Manual
	Bibliography

	Getting Started With GW-BASIC
	Loading GW-BASIC
	Modes of Operation
	Direct Mode
	Indirect Mode

	The GW-BASIC Command Line Format
	GW-BASIC Statements, Functions, Commands, and Variables
	Keywords
	Commands
	Statements
	Functions
	Numeric Functions
	String Functions
	User-Defined Functions

	Variables

	Line Format
	Returning to MS-DOS

	Reviewing and Practicing GW-BASIC
	Example for the Direct Mode
	Examples for the Indirect Mode
	Function Keys
	Editing Lines
	Saving Your Program File

	The GW-BASIC Screen Editor
	Editing Lines in New Files
	Editing Lines in Saved Files
	Editing the Information in a Program Line

	Special Keys
	Function Keys

	Creating and Using Files
	Program File Commands
	Data Files
	Creating a Sequential File
	Accessing a Sequential File
	Adding Data to a Sequential File

	Random Access Files
	Creating a Random Access File
	Accessing a Random Access File


	Constants, Variables, Expressions and Operators
	Constants
	Variables
	Variable Names and Declarations
	Type Declaration Characters
	Array Variables
	Memory Space Requirements for Variable Storage

	Type Conversion
	Expressions and Operators
	Arithmetic Operators
	Integer Division and Modulus Arithmetic
	Overflow and Division by Zero

	Relational Operators
	Logical Operators
	Functional Operators
	String Operators


	App. A - Error Codes and Messages
	1   NEXT without FOR
	2   Syntax error
	3   RETURN without GOSUB
	4   Out of DATA
	5   Illegal function call
	6   Overflow
	7   Out of memory
	8   Undefined line number
	9   Subscript out of range
	10 Duplicate Definition
	11 Division by zero
	12 Illegal direct
	13 Type mismatch
	14 Out of string space
	15 String too long
	16 String formula too complex
	17 Can't continue
	18 Undefined user function
	19 No RESUME
	20 RESUME without error
	21 Unprintable error
	22 Missing operand
	23 Line buffer overflow
	24 Device Timeout
	25 Device Fault
	26 FOR Without NEXT
	27 Out of Paper
	28 Unprintable error
	29 WHILE without WEND
	30 WEND without WHILE
	31-49 Unprintable error
	50 FIELD overflow
	51 Internal error
	52 Bad file number
	53 File not found
	54 Bad file mode
	55 File already open
	56 Unprintable error
	57 Device I/O Error
	58 File already exists
	59-60 Unprintable error
	61 Disk full
	62 Input past end
	63 Bad record number
	64 Bad filename
	65 Unprintable error
	66 Direct statement in file
	67 Too many files
	68 Device Unavailable
	69 Communication buffer overflow
	70 Permission Denied
	71 Disk not Ready
	72 Disk media error
	73 Advanced Feature
	74 Rename across disks
	75 Path/File Access Error
	76 Path not found

	App. B - Mathematical Functions
	App. C - ASCII Character Codes
	App. D - Assembly Language (Machine Code) Subroutines
	Memory Allocation
	CALL Statement
	USR Function Calls
	Programs That Call Assembly Language Programs

	App. E - Converting BASIC Programs to GW-BASIC
	String Dimensions
	Multiple Assignments
	Multiple Statements
	MAT Functions
	FOR-NEXT Loops

	App. F - Communications
	Opening Communications Files
	Communications I/O
	The COM I/O Functions
	Possible Errors
	The INPUT$ Function
	The TTY Sample Program
	Notes on the TTY Sample Program

	App. G - Hexadecimal Equivalents
	App. H - Key Scan Codes
	App.  I  - Characters Recognized by GW-BASIC
	Glossary
	A
	abend
	access
	access methods
	accuracy
	acronym
	active partition
	address
	algebraic language
	algorithm
	alphabetic
	alphanumeric
	application
	application program
	argument
	array
	ASCII
	assembler
	assembly language
	asynchronous
	asynchronous communication

	B - C
	back-up
	BASIC
	batch processing
	baud
	binary
	binary digit
	bit
	block
	boolean logic
	boot
	bps
	buffer
	built-in clock
	byte
	calculation
	central processor (CPU)
	chaining
	character
	COBOL
	code
	command
	compatible
	compiler
	computer network
	concatenate
	configuration
	constant
	coprocessor
	cursor

	D - E
	data
	data element
	data file
	debug
	default
	delimit
	delimiter
	detail file
	device
	diagnostic programs
	directory
	diskette
	Disk Operating System
	DOS
	double-density
	double-precision
	double-sided
	drive
	end-of-file mark (EOF)
	erase
	error message
	execute
	exponent
	extension

	F - K
	field
	file
	file protection
	file structure
	filename
	fixed disk
	floating-point arithmetic
	floating-point routine
	format
	function
	function keys
	GIGO
	global search
	graphics
	hard copy
	hardware
	hexadecimal
	hidden files
	hierarchical directories
	housekeeping functions
	information
	interpreter
	input
	input/output
	instruction
	integer
	integrated circuit
	interface
	I/O
	job
	K

	L - Q
	logarithm
	loop
	M
	mantissa
	master file
	media
	medium
	memory
	menu
	microprocessor
	modem
	MS-DOS
	nested programs or subroutines
	null
	numeric
	octal number system
	operand
	operating system
	operator
	option
	output
	parallel output
	parameter
	parity
	partition
	peripheral
	pixel
	port
	power
	program
	prompt

	R - Z
	RAM
	radian
	radix
	random-access memory
	raster unit
	read-only memory
	real number
	real time
	remote
	reverse video
	ROM
	RS-232
	serial output
	single-density
	single-precision value
	single-sided
	software
	stack architecture
	statement
	synchronous
	switch
	syntax
	system
	task
	toggle
	track
	tree-structured directory
	truncation
	upgrade
	utility function
	variable
	volume label
	word
	write-protect notch



	GW-BASIC User's Reference
	Table of Contents - Instruction Overview
	Tables Overview
	Impressum
	Introduction
	A - C
	ABS Function
	ASC Function
	ATN Function
	AUTO Command
	BEEP Statement
	BLOAD Command
	BSAVE Command
	CALL Statement
	CDBL Function
	CHAIN Statement
	CHR$ Function
	CINT Function
	CIRCLE Statement
	CLEAR Command
	CLOSE Statement
	CLS Statement
	COLOR Statement
	COM(n) Statement
	COMMON Statement
	CONT Command
	COS Function
	CSNG Function
	CSRLIN Variable
	CVI, CVS, CVD Functions

	D - E
	DATE Statement
	DATE$ Statement and Variable
	DEF FN Statement
	DEFDBL Statement
	DEFINT Statement
	DEFSNG Statement
	DEFSTR Statement
	DEF SEG Statement
	DEF USR Statement
	DELETE Command
	DIM Statement
	DRAW Statement
	EDIT Command
	END Statement
	ENVIRON Statement
	ENVIRON$ Function
	EOF Function
	ERASE Statement
	ERDEV and ERDEV$ Variables
	ERR and ERL Variables
	ERROR Statement
	EXP Function
	EXTERR Function

	F - I
	FIELD Statement
	FILES Command
	FIX Function
	FOR and NEXT Statements
	FRE Function
	GET Statement (Files)
	GET Statement (Graphics)
	GOSUB...RETURN Statement
	GOTO Statement
	HEX$ Function
	IF Statement
	INKEY$ Variable
	INP Function
	INPUT Statement
	INPUT# Statement
	INPUT$ Function
	INSTR Function
	INT Function
	IOCTL Statement
	IOCTL$ Function

	K - L
	KEY Statement
	KEY(n) Statement
	KILL Command
	LEFT$ Function
	LEN Function
	LET Statement
	LINE Statement
	LINE INPUT# Statement
	LIST Command
	LLIST Command
	LOAD Command
	LOC Function
	LOCATE Statement
	LOCK Statement
	LOF Function
	LOG Function
	LPOS Function
	LPRINT Statement
	LPRINT USING Statement
	LSET Statement
	RSET Statement

	M - O
	MERGE Command
	MID$ Function
	MID$ Statement
	MKDIR Command
	MKI$, MKS$, MKD$ Functions
	NAME Command
	NEW Command
	OCT$ Function
	ON COM(n) Statement
	ON KEY(n) Statement
	ON PEN Statement
	ON PLAY(n) Statement
	ON STRIG(n) Statement
	ON TIMER(n) Statement
	ON ERROR GOTO Statement
	ON ... GOSUB Statement
	ON ... GOTO Statement
	OPEN Statement
	OPEN "COM(n) Statement
	OPTION BASE Statement
	OUT Statement

	P-R
	PAINT Statement
	PALETTE, PALETTE USING Statements
	PCOPY Command
	PEEK Function
	PEN Statement and Function
	PLAY Statement
	PLAY(n) Function
	PMAP Function (Graphics)
	POINT Function
	POKE Statement
	POS Function
	PRESET Statement
	PSET Statement
	PRINT Statement
	PRINT USING Statement
	PRINT# and PRINT# USING Statements
	PUT Statement (Files)
	PUT Statement (Graphics)
	RANDOMIZE Statement
	READ Statement
	REM Statement
	RENUM Command
	RESET Command
	RESTORE Statement
	RESUME Statement
	RETURN Statement
	RIGHT$ Function
	RMDIR Command
	RND Function
	RSET Statement
	RUN Command

	S - T
	SAVE Command
	SCREEN Statement
	SGN Function
	SHELL Statement
	SIN Function
	SOUND Statement
	SPACE$ Function
	SPC Function
	SQR Function
	STICK Function
	STOP Statement
	STR$ Function
	STRIG Statement and Function
	STRIG(n) Statement
	STRING$ Function
	SWAP Statement
	SYSTEM Command
	TAB Function
	TAN Function
	TIME$ Statement and Variable
	TIMER Function
	TRON/TROFF Commands

	U - Z
	UNLOCK Statement
	USR Function
	VAL Function
	VARPTR Function
	VARPTR$ Function
	VIEW Statement
	VIEW PRINT Statement
	WAIT Statement
	WHILE-WEND Statement
	WIDTH Statement
	WINDOW Statement
	WRITE Statement
	WRITE# Statement



